Skip to main content

Genetically Encoded Fluorescent Probes for Intracellular Zn2+ Imaging

  • Chapter
  • First Online:
Zinc Signals in Cellular Functions and Disorders
  • 1133 Accesses

Abstract

In this chapter we provide an overview of the various genetically encoded fluorescent Zn2+ sensors that have been developed over the past 5 to 10 years. We focus on sensors based on Förster resonance energy transfer (FRET), as these have so far proven to be the most useful for detecting Zn2+ in biological samples. Our goal is to provide a balanced discussion of the pros and cons of the various sensors and their application in intracellular imaging. Following the description of the various sensors, several recent applications of these sensors are discussed. We end the chapter by identifying remaining challenges in this field and discussing future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barondeau DP, Kassmann CJ, Tainer JA, Getzoff ED (2002) Structural chemistry of a green fluorescent protein Zn biosensor. J Am Chem Soc 124:3522–3524

    Article  PubMed  CAS  Google Scholar 

  • Bellomo EA, Meur G, Rutter GA (2011) Glucose regulates free cytosolic Zn2+ concentration, Slc39 (Zip), and metallothionein gene expression in primary pancreatic islet beta-cells. J Biol Chem 286:25778–25789

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bozym RA, Thompson RB, Stoddard AK, Fierke CA (2006) Measuring picomolar intracellular exchangeable zinc in Pc-12 cells using a ratiometric fluorescence biosensor. ACS Chem Biol 1:103–111

    Article  PubMed  CAS  Google Scholar 

  • Chabosseau P, Tuncay E, Meur G, Bellomo EA, Hessels, AM, Hughes S, Johnson PRV, Bugliani M, Marchetti P, Turan B, Lyon AR, Merkx M, Rutter GA (2014) ACS Chem Biol in press (doi:10.1021/cb5004064)

  • Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281:24085–24089

    Article  PubMed  CAS  Google Scholar 

  • Dittmer PJ, Miranda JG, Gorski JA, Palmer AE (2009) Genetically encoded sensors to elucidate spatial distribution of cellular zinc. J Biol Chem 284:16289–16297

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Domaille DW, Que EL, Chang CJ (2008) Synthetic fluorescent sensors for studying the cell biology of metals. Nat Chem Biol 4:168–175

    Article  PubMed  CAS  Google Scholar 

  • Donadelli M, Dalla Pozza E, Costanzo C, Scupoli MT, Scarpa A, Palmieri M (2008) Zinc depletion efficiently inhibits pancreatic cancer cell growth by increasing the ratio of antiproliferative/proliferative genes. J Cell Biochem 104:202–212

    Article  PubMed  CAS  Google Scholar 

  • Evers TH, Appelhof MA, De Graaf-Heuvelmans PT, Meijer EW, Merkx M (2007) Ratiometric detection of Zn(II) using chelating fluorescent protein chimeras. J Mol Biol 374:411–425

    Article  PubMed  CAS  Google Scholar 

  • Evers TH, Appelhof MA, Meijer EW, Merkx M (2008) His-tags as Zn(II) binding motifs in a protein-based fluorescent sensor. Protein Eng Des Sel 21:529–536

    Article  PubMed  CAS  Google Scholar 

  • Hashemi M, Ghavami S, Eshraghi M, Booy EP, Los M (2007) Cytotoxic effects of intra and extracellular zinc chelation on human breast cancer cells. Eur J Pharmacol 557:9–19

    Article  PubMed  CAS  Google Scholar 

  • Ho LH, Riuffin RE, Murgia C, Li XL, Krilis SA, Zalewski PD (2004) Labile zinc and zinc transporter Znt4 in mast cell granules: role in regulation Nf-Kb translocation. J Immunol 172:7750–7760

    Article  PubMed  CAS  Google Scholar 

  • Hutton JC, Penn EJ, Peshavaria M (1983) Low-molecular weight constituents of isolated insuline-secretory granules: bivalent-cations, adenine-nucleotides and inorganic phosphates. Biochem J 210:297–305

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kikuchi K (2010) Design, synthesis and biological application of chemical probes for bio-imaging. Chem Soc Rev 39:2048–2053

    Article  PubMed  CAS  Google Scholar 

  • Krezel A, Maret W (2006) Zinc-buffering capacity of a eukaryotic cell at physiological Pzn. J Biol Inorg Chem 11:1049–1062

    Article  PubMed  CAS  Google Scholar 

  • Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schroder A, Kramer U, Barbier-Brygoo H, Thomine S (2005) Mobilization of vacuolar iron by Atnramp3 and Atnramp4 is essential for seed germination on low iron. EMBO J 24:4041–4051

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lanquar V, Grossmann G, Vinkenborg JL, Merkx M, Thomine S, Frommer WB (2014) Dynamic imaging of cytosolic zinc in Arabidopsis roots combining fret sensors and rootchip technology. New Phytol 202:198–208

    Article  PubMed  CAS  Google Scholar 

  • Lindenburg LH, Hessels AM, Ebberink EH, Arts R, Merkx M (2013) Robust red FRET sensors using self-associating fluorescent domains. ACS Chem Biol 8:2133–2139

    Article  PubMed  CAS  Google Scholar 

  • Linkous DH, Flinn JM, Koh JY, Lanzirotti A, Bertsch PM, Jones BF, Giblin LJ, Frederickson CJ (2008) Evidence that the Znt3 protein controls the total amount of elemental zinc in synaptic vesicles. J Histochem Cytochem 56:3–6

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu J, Karpus J, Wegner SV, Chen PR, He C (2013a) Genetically encoded copper(I) reporters with improved response for use in imaging. J Am Chem Soc 135:3144–3149

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Li J, Hu C, Zhou Q, Zhang W, Hu M, Zhou J, Wang J (2013b) Significant expansion of the fluorescent protein chromophore through the genetic incorporation of a metal-chelating unnatural amino acid. Angew Chem Int Ed Engl 52:4805–4809

    Article  PubMed  CAS  Google Scholar 

  • McCranor BJ, Bozym RA, Vitolo MI, Fierke CA, Bambrick L, Polster BM, Fiskum G, Thompson RB (2012) Quantitative imaging of mitochondrial and cytosolic free zinc levels in an in vitro model of ischemia/reperfusion. J Bioenerg Biomembr 44:253–263

    Google Scholar 

  • Miranda JG, Weaver AL, Qin Y, Park JG, Stoddard CI, Lin MZ, Palmer AE (2012) New alternately colored fret sensors for simultaneous monitoring of Zn2+ in multiple cellular locations. PLoS One 7:E49371

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mizuno T, Murao K, Tanabe Y, Oda M, Tanaka T (2007) Metal-ion-dependent GFP emission in vivo by combining a circularly permutated green fluorescent protein with an engineered metal-ion-binding coiled-coil. J Am Chem Soc 129:11378–11383

    Article  PubMed  CAS  Google Scholar 

  • Murgia C, Devirgiliis C, Mancini E, Donadel G, Zalewski P, Perozzi G (2009) Diabetes-linked zinc transporter Znt8 is a homodimeric protein expressed by distinct rodent endocrine cell types in the pancreas and other glands. Nutr Metab Cardiovasc Dis 19:431–439

    Article  PubMed  CAS  Google Scholar 

  • Nolan EM, Lippard SJ (2009) Small-molecule fluorescent sensors for investigating zinc metalloneurochemistry. Acc Chem Res 42:193–203

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Park JG, Qin Y, Galati DF, Palmer AE (2012) New sensors for quantitative measurement of mitochondrial Zn2+. ACS Chem Biol 7:1636–1640

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Qiao W, Mooney M, Bird AJ, Winge DR, Eide DJ (2006) Zinc binding to a regulatory zinc-sensing domain monitored in vivo by using fret. Proc Natl Acad Sci USA 103:8674–8679

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Qin Y, Dittmer PJ, Park JG, Jansen KB, Palmer AE (2011) Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors. Proc Natl Acad Sci USA 108:7351–7356

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Qin Y, Miranda JG, Stoddard CI, Dean KM, Galati DF, Palmer AE (2013) Direct comparison of a genetically encoded sensor and small molecule indicator: implications for quantification of cytosolic Zn2+. ACS Chem Biol 8:2366–2371

    Article  PubMed  CAS  Google Scholar 

  • Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284:805–808

    Article  PubMed  CAS  Google Scholar 

  • Sinclair SA, Sherson SM, Jarvis R, Camakaris J, Cobbett CS (2007) The use of the zinc-fluorophore, zinpyr-1, in the study of zinc homeostasis in Arabidopsis roots. New Phytol 174:39–45

    Article  PubMed  CAS  Google Scholar 

  • Taylor KM, Hiscox S, Nicholson RI, Hogstrand C, Kille P (2012) Protein kinase Ck2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel Zip7. Sci Signal 5:ra11

    PubMed  PubMed Central  Google Scholar 

  • Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  PubMed  CAS  Google Scholar 

  • Van Dongen EM, Dekkers LM, Spijker K, Meijer EW, Klomp LW, Merkx M (2006) Ratiometric fluorescent sensor proteins with subnanomolar affinity for Zn(II) based on copper chaperone domains. J Am Chem Soc 128:10754–10762

    Article  PubMed  Google Scholar 

  • Van Dongen EMWM, Evers TH, Dekkers LM, Meijer EW, Klomp LWJ, Merkx M (2007) Variation of linker length in ratiometric fluorescent sensor proteins allows rational tuning of Zn(II) affinity in the picomolar to femtomolar range. J Am Chem Soc 129:3494–3495

    Article  PubMed  Google Scholar 

  • Vinkenborg JL, Nicolson TJ, Bellomo EA, Koay MS, Rutter GA, Merkx M (2009) Genetically encoded fret sensors to monitor intracellular Zn2+ homeostasis. Nat Methods 6:737–740

    Article  PubMed  CAS  Google Scholar 

  • Vinkenborg JL, Van Duijnhoven SM, Merkx M (2011) Reengineering of a fluorescent zinc sensor protein yields the first genetically encoded cadmium probe. Chem Commun (Camb) 47:11879–11881

    Article  CAS  Google Scholar 

  • Wegner SV, Arslan H, Sunbul M, Yin J, He C (2010) Dynamic copper(I) imaging in mammalian cells with a genetically encoded fluorescent copper(I) sensor. J Am Chem Soc 132:2567–2569

    Article  PubMed  CAS  Google Scholar 

  • Xue L, Li G, Yu C, Jiang H (2012) A ratiometric and targetable fluorescent sensor for quantification of mitochondrial zinc ions. Chemistry 18:1050–1054

    Article  PubMed  CAS  Google Scholar 

  • Zalewski PD, Millard SH, Forbes IJ, Kapaniris O, Slavotinek A, Betts WH, Ward AD, Lincoln SF, Mahadevan I (1994) Video image analysis of labile zinc in viable pancreatic islet cells using a specific fluorescent probe for zinc. J Histochem Cytochem 42:877–884

    Article  PubMed  CAS  Google Scholar 

  • Zeng HH, Matveeva EG, Stoddard AK, Fierke CA, Thompson RB (2013) Long wavelength fluorescence ratiometric zinc biosensor. J Fluoresc 23:375–379

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work of the authors on genetically encoded fluorescent probes is supported by grants from The Netherlands Organization of Scientific Research (VIDI grant 700.56.428 and ECHO grant 700.59.013) and an ERC starting grant (ERC-2011-StG 280255).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten Merkx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Hessels, A.M., Merkx, M. (2014). Genetically Encoded Fluorescent Probes for Intracellular Zn2+ Imaging. In: Fukada, T., Kambe, T. (eds) Zinc Signals in Cellular Functions and Disorders. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55114-0_7

Download citation

Publish with us

Policies and ethics