Skip to main content

Optical Emission Spectra of Phthalocyanines

  • Chapter
  • First Online:
Optical Spectra of Phthalocyanines and Related Compounds

Part of the book series: NIMS Monographs ((NIMSM))

Abstract

In this chapter, optical emission phenomena involving phthalocyanine derivatives and the related macrocyclic compounds are described. In particular, we focus on the fluorescence emitted from the macrocyclic ligand with a brief discussion of other emission phenomena (e.g., phosphorescence, delayed fluorescence, electro-chemiluminescence). Unlike optical absorption, not all macrocyclic compounds luminesce. In this chapter, the factors that cause macrocyclic dyes to be luminescent or nonluninescent are described. Furthermore, we focus on the aggregation and acid-base equilibrium involving these compounds in detail because these phenomena are frequently misunderstood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    From the Frank-Condon principle (see Sect. 1.1.3).

  2. 2.

    As the S1 → S0 transition is an allowed process, the emission promptly occurs.

  3. 3.

    The transition from S1 (v = 0) to S0 (v = 0) is referred to as a 0–0 transition, in common with optical absorption.

  4. 4.

    Not all metal complexes are fluorescent (Sect. 4.1.3.2).

  5. 5.

    Otherwise, the emission is from another substance, such as an impurity (Sect. 4.1.5).

  6. 6.

    The appearance of a single peak in the emission spectra of metal-free derivatives can occasionally give rise to a serious misinterpretation as mentioned later (Sect. 4.1.5).

  7. 7.

    Some high-spec spectrometers can directly determine quantum yield values using an integrating sphere (also known as an Ulbricht sphere).

  8. 8.

    See Fig. 1.12 for the α and β positions.

  9. 9.

    Fluorescence data for the same naphthalocyanine derivative in pyridine are reported in the same reference [24]. However, these data are not cited in this work because of the dissimilarity of the excitation spectrum to the absorption spectrum in the same solvent and the appearance of the emission peak at a much shorter wavelength (749.8 nm) than absorption peak (783.6 nm); see Sect. 4.1.5.

  10. 10.

    Readers are reminded that Q band of porphyrins (an electronic transition to the lowest excited state) is weak not because the transition is forbidden but configuration interaction between the two kinds of one-electron transitions involving the nearly degenerate HOMOs and LUMO significantly reduced the magnitude of the electric dipole moment in the lowest excited state (Sect. 2.2.6). As optical emission is the most likely to occur from the lowest excited (S1) state (Kasha’ rule; Sect. 4.1.1), it is quite reasonable that the most intense fluorescence from porphyrins is observed near the Q band. Note that this is not saying that no emission is observed near their Soret band. Actually, weak emission can be observed at the red flank of Soret band under appropriate conditions [43, 44] [i.e., emission from the S2 state; cf. see S2 emission from metal-free phthalocyanines (Fig. 4.7)]. Unlike the violet emission from phthalocyanines (Sect. 4.2.4), the corresponding excitation spectrum is similar to the Soret band.

  11. 11.

    This usually occurs when the metal ion is labile and hence liable to leave the cavity (e.g., the known SbIII complex [8]) or when it is difficult to remove the unreacted free base from its metal complex through the synthetic procedure.

  12. 12.

    Actually, the emission peak appears at a slightly longer wavelength, and the magnitude of the difference may be considered as being reasonably close to the Stokes shift.

  13. 13.

    It was later found that emission could not be detected when the SbIII complex was very carefully purified [8].

  14. 14.

    Fortunately, the Q-band position of the SbIII complex is significantly red shifted relative to those of the other metal complexes [8].

  15. 15.

    Some authors have attempted to attribute the appearance of free-base-like excitation spectra to the demetallation of the photoexcited molecule followed by the protonation of the macrocyclic ligand in its cavity. Although this possibility cannot be completely excluded, it is unlikely because the two successive chemical steps must be completed within picoseconds before the initiation of the optical emission. If the assumed reactions do occur, continuous photoirradiation will increase the ratio of the corresponding free base to the bulk complex during irradiation.

  16. 16.

    Phosphorescence of the zinc derivative had been reported in their earlier work [32], but this was later reassigned as an artifact by the same group [29].

  17. 17.

    Emission from 1O2 around 1270 nm is mentioned in Sect. 4.2.3.

  18. 18.

    As far as phthalocyanines and related macrocyclic compounds are concerned, their application to such devices appears to be unpromising because the energy gap between S1 and T1 is too large to thermally excite triplet molecules.

  19. 19.

    The weak emission may have been due to poor solubility and strong aggregation of the macrocyclic compound in the solvent.

  20. 20.

    It is noteworthy that only a few systems have been reported with the ECL peak position at a longer wavelength than the nc system despite more than three decades having passed since this work was published [62–64].

References

  1. N. Kobayashi, Y. Higashi, T. Osa, Chem. Lett. 1813–1816 (1994)

    Google Scholar 

  2. H. Isago, H. Fujita, unpublished data

    Google Scholar 

  3. H. Isago, H. Fujita, M. Hirota, T. Sugimori, Y. Kagaya, J. Porphyrins Phthalocyanines 17, 763–771 (2013)

    Article  CAS  Google Scholar 

  4. S.J. Atherton, A. Hamiman, J. Am. Chem. Soc. 115, 1816–1822 (1993)

    Article  CAS  Google Scholar 

  5. H. Isago, K. Miura, Y. Oyama, J. Inorg. Biochem. 102, 380–387 (2008)

    Article  CAS  Google Scholar 

  6. H. Isago, Y. Kagaya, S.-I. Nakajima, Chem. Lett. 32, 112–113 (2003)

    Article  CAS  Google Scholar 

  7. H. Isago, Y. Kagaya, Chem. Lett. 35, 8–9 (2005)

    Article  Google Scholar 

  8. H. Isago, Chem. Commun. 1864–1865 (2003)

    Google Scholar 

  9. K. Ishii, N. Kobayashi, in The Porphyrin Handbook, vol. 16, ed. by K.M. Kadish, K.M. Smith, R. Guilard (Academic Press, San Diego, 2003), pp. 1–42

    Google Scholar 

  10. T. Nyokong, Coord. Chem. Rev. 251, 1707–1722 (2007)

    Article  CAS  Google Scholar 

  11. P.S. Vincett, E.M. Voigt, K.E. Rieckoff, J. Chem. Phys. 55, 4131–4140 (1971)

    Article  CAS  Google Scholar 

  12. N. Kobayashi, N. Sasaki, Y. Higashi, T. Osa, Inorg. Chem. 34, 1636–1638 (1995)

    Article  CAS  Google Scholar 

  13. S.L. Gilat, T.W. Ebbesen, J. Phys. Chem. 97, 3551–3554 (1993)

    Article  CAS  Google Scholar 

  14. H. Ohtani, Y. Kobayashi, T. Ohno, S. Kato, T. Tanno, A. Yamada, J. Phys. Chem. 88, 4431–4435 (1984)

    Article  CAS  Google Scholar 

  15. R. Darwent, P. Douglas, A. Harriman, G. Ported, M.C. Richoux, Coord. Chem. Rev. 44, 83–126 (1982)

    Article  CAS  Google Scholar 

  16. J.H. Brannon, D. Magde, J. Am. Chem. Soc. 102, 62–65 (1980)

    Article  CAS  Google Scholar 

  17. W. Freyer, K. Teuchner, J. Photochem. Photobiol. A 45, 117–121 (1988)

    Article  CAS  Google Scholar 

  18. X.-F. Zhang, H.-J. Xu, J. Chem. Soc. Faraday Trans. 89, 3347–3351 (1993)

    Article  CAS  Google Scholar 

  19. E.R. Menzel, K.E. Rieckhoff, E.M. Voigt, J. Chem. Phys. 58, 5726–5734 (1973)

    Article  CAS  Google Scholar 

  20. A.P. Pelliccioli, K. Henbest, G. Kwag, T.R. Carvagno, M.E. Kenney, M.A.J. Rodgers, J. Phys. Chem. A 105, 1757–1766 (2001)

    Article  CAS  Google Scholar 

  21. G. Knör, Inorg. Chem. 35, 7916–7918 (1996)

    Article  Google Scholar 

  22. H. Isago, unpublished result

    Google Scholar 

  23. D.S. Laurence, D.G. Whinen, Photochem. Photobiol. 64, 923–935 (1996)

    Article  Google Scholar 

  24. N. Kobayashi, S.-I. Nakajima, H. Ogata, T. Fukuda, Chem. Eur. J. 10, 6294–6312 (2004)

    Article  CAS  Google Scholar 

  25. W. Freyer, S. Dahne, L. Q. Minh, K. Teuchner, Z. Chem. 334–336 (1986)

    Google Scholar 

  26. K. Ishi, Y. Hirose, M. Fujitsuka, O. Ito, N. Kobayashi, J. Am. Chem. Soc. 123, 702–708 (2001)

    Article  Google Scholar 

  27. H. Isago, Y. Kagaya, Inorg. Chem. 51, 8447–8454 (2012)

    Article  CAS  Google Scholar 

  28. D. Guez, D. Markovitsi, M. Sommerauer, M. Hanack, Chem. Phys. Lett. 249, 309–313 (1996)

    Article  CAS  Google Scholar 

  29. B.D. Richter, M.E. Kenny, W.E. Ford, M.A. Rodgers, J. Am. Chem. Soc. 112, 8064–8070 (1990)

    Article  Google Scholar 

  30. N. Kobayashi, H. Ogata, N. Nonaka, E.A. Luk’yanets, Chem. Eur. J. 9, 5123–5134 (2003)

    Article  CAS  Google Scholar 

  31. T.C. Gunaratne, A.V. Gusev, C. Rizzoli, X. Peng, A. Rosa, G. Ricciardi, E.J. Baerends, C. Rizzoli, M.E. Kenney, M.A.J. Rodgers, J. Phys. Chem. A 109, 2078–2089 (2005)

    Article  CAS  Google Scholar 

  32. A.V. Soldatova, J. Kim, C. Rizzoli, M.E. Kenney, M.A. Rodgers, A. Rosa, G. Ricciardi, Inorg. Chem. 50, 1135–1149 (2011)

    Article  CAS  Google Scholar 

  33. R.R. Millard, B.I. Greene, J. Phys. Chem. 89, 2976–2978 (1985)

    Article  CAS  Google Scholar 

  34. H. Isago, K. Miura, M. Kanesato, J. Photochem. Photobiol. A 197, 313–320 (2008)

    Article  CAS  Google Scholar 

  35. E.M. Kober, J.V. Capsar, R.S. Lumpkin, T.J. Meyer, J. Phys. Chem. 90, 3722–3734 (1986)

    Google Scholar 

  36. M. Bixon, J. Jortner, J. Cortes, H. Heitele, M.E. Michel-Beyerle, J. Phys. Chem. 98, 7289–7299 (1994)

    Article  CAS  Google Scholar 

  37. T. Fukuda, N. Kobayashi, K. Ueno, H. Ogino, J. Am. Chem. Soc. 123, 10740–10741 (2001)

    Article  Google Scholar 

  38. T. Nyokong, J. Mol. Str. 689, 89–97 (2004)

    Article  Google Scholar 

  39. A. Beeby, S. FitzGerald, C.F. Stanley, J. Chem. Soc. Perkin Trans. 2, 1978–1982 (2001)

    Google Scholar 

  40. N. Kobayashi, T. Ishizaki, K. Ishi, H. Konami, J. Am. Chem. Soc. 121, 9096–9110 (1999)

    Article  CAS  Google Scholar 

  41. N. Kobayashi, Bull. Chem. Soc. Jpn. 75, 1–19 (2002)

    Article  CAS  Google Scholar 

  42. P.G. Seybold, M. Gouterman, J. Mol. Spectrosc. 31, 1–13 (1969)

    Article  CAS  Google Scholar 

  43. L. Bajema, M. Gouterman, C.B. Rose, J. Mol. Spectrosc. 39, 421–431 (1971)

    Google Scholar 

  44. J. Karolczak, D. Kowalska, A. Lukaszewicz, A. Maciejewski, R.P. Steer, J. Phys. Chem. A 108, 4570–4575 (2004)

    Article  CAS  Google Scholar 

  45. L. Oddos-Marcel, F. Madeore, A. Bock, D. Neher, A. Ferencz, H. Rengel, G. Wegner, C. Kryschi, H.P. Trommsdorff, J. Phys. Chem. 100, 11850–11856 (1996)

    Article  CAS  Google Scholar 

  46. O. Ohno, N. Ishikawa, H. Matsuzawa, Y. Kaizu, H. Kobayashi, J. Phys. Chem. 93, 1713–1718 (1989)

    Article  CAS  Google Scholar 

  47. T. Kaneko, T. Arai, K. Tokumaru, D. Matsunaga, H. Sakuragi, Chem. Lett. 345–346 (1996)

    Google Scholar 

  48. X.-Y. Li, D.K.P. Ng, Tetrahedron Lett. 42, 305–309 (2001)

    Article  CAS  Google Scholar 

  49. K. Kameyama, M. Morisue, A. Satake, Y. Kobuke, Angew. Chem. 44, 4763–4766 (2005)

    Article  CAS  Google Scholar 

  50. E.S. Dodsworth, A.B.P. Lever, P. Seymour, C.C. Leznoff, J. Phys. Chem. 89, 5698–5705 (1985)

    Article  CAS  Google Scholar 

  51. W.E. Ford, B.D. Richter, M.E. Kenney, M.A.J. Rodgers, Photochem. Photobiol. 50, 277–282 (1989)

    Article  CAS  Google Scholar 

  52. W. Freyer, H. Stiel, M. Hild, K. Teuchner, D. Leupold, Photochem. Photobiol. 66, 596–604 (1997)

    Article  CAS  Google Scholar 

  53. D. Dolphin, B.R. James, A.L. Murray, J.R. Thornback, Can. J. Chem. 58, 1125–1132 (1980)

    Article  CAS  Google Scholar 

  54. M. Scholz, R. Dědic, T. Breitenbach, J. Hála, Photochem. Photobiol. Sci. 12, 1873–1884 (2013)

    Article  CAS  Google Scholar 

  55. C. Schweitzer, R. Schmidt, Chem. Rev. 103, 1685–1757 (2003)

    Article  CAS  Google Scholar 

  56. A.A. Krasnovsky Jr, C.S. Foote, J. Am. Chem. Soc. 115, 6013–6016 (1993)

    Article  CAS  Google Scholar 

  57. A.A. Goman, I. Hamblett, T.J. Hill, J. Am. Chem. Soc. 117, 10751–10752 (1995)

    Article  Google Scholar 

  58. Y. Fu, A.A. Krasnovsky Jr, C.S. Foote, J. Phys. Chem. A 101, 2552–2554 (1997)

    Article  CAS  Google Scholar 

  59. S.T. Murphy, K. Kondo, C.S. Foote, J. Am. Chem. Soc. 121, 3751–3755 (1999)

    Article  CAS  Google Scholar 

  60. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 492, 234–238 (2012)

    Article  CAS  Google Scholar 

  61. S. Muralidharan, G. Ferraudi, J. Phys. Chem. 87, 4877–4881 (1983)

    Article  CAS  Google Scholar 

  62. S. Muralidharan, G. Ferraudi, L.K. Patterson, Inorg. Chim. Acta 65, L235–L236 (1982)

    Article  CAS  Google Scholar 

  63. Y. Kaneko, Y. Nishimura, N. Takane, T. Arai, H. Sakuragi, N. Kobayashi, D. Matsunaga, C. Pac, K. Tokumaru, J. Photochem. Photobiol. A 106, 177–183 (1997)

    Article  CAS  Google Scholar 

  64. M.M. Richter, Chem. Rev. 104, 3003–3036 (2004)

    Article  CAS  Google Scholar 

  65. L. Huab, G. Xu, Chem. Soc. Rev. 39, 3275–3304 (2010)

    Article  Google Scholar 

  66. W. Miao, Chem. Rev. 108, 2506–2553 (2008)

    Article  CAS  Google Scholar 

  67. N.E. Tokel, C.P. Keszthelyi, A.J. Bard, J. Am. Chem. Soc. 94, 4872–4877 (1972)

    Article  CAS  Google Scholar 

  68. B.L. Wheeler, G. Nagasubramanian, A.J. Bard, L.A. Schechtman, D.R. Dininny, M.E. Kenney, J. Am. Chem. Soc. 106, 7404–7410 (1984)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Isago .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 National Institute for Materials Science, Japan. Published by Springer Japan

About this chapter

Cite this chapter

Isago, H. (2015). Optical Emission Spectra of Phthalocyanines. In: Optical Spectra of Phthalocyanines and Related Compounds. NIMS Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55102-7_4

Download citation

Publish with us

Policies and ethics