Skip to main content

Real Optical Absorption Spectra Observed in Laboratories

  • Chapter
  • First Online:
Optical Spectra of Phthalocyanines and Related Compounds

Part of the book series: NIMS Monographs ((NIMSM))

Abstract

In this chapter, some factors that internally and externally affect the optical absorption spectra of phthalocyanine derivatives and related macrocyclic compounds are described and it is illustrated how they contribute to the deviation from the prototypical spectrum. The internal factors include the type and position of substituent(s) on the periphery of the macrocycle, the expansion of the π-conjugation system, the nature of the metal ion in the cavity of the macrocycle (ion size, oxidation number, and coordination geometry), and that of the axial ligand on the central metal ion. The external factors cover acid-base equilibrium, oxidation and reduction on the macrocycle, aggregation and dimerization (exciton coupling and π–π interaction), and solvent effects. In particular, much attention is focused on aggregation and acid-base equilibrium because these phenomena are frequently misunderstood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The appearance of such an intense band in this spectral region is unusual. The origin of this band is discussed in Sect. 3.2.2.1.

  2. 2.

    Although it is generally known that the Q-band position of phthalocyanines does not strongly depend on the metal ion in the cavity of the macrocycle (Sect. 3.2.1), the presence of a pnictogen can give rise to a significant redshift of the Q-band [211].

  3. 3.

    Little structural deformation of the macrocyclic ligand has been found in its crystal structure.

  4. 4.

    Effects of peripheral substituents on the absorption spectra are discussed in Sect. 4.2.2.

  5. 5.

    The width of the Q-band is large. Only the absorption maximum wavelength is reported in the literature.

  6. 6.

    For the BiIII derivatives, the dissociation of axial ligands in solutions has been suggested from electrochemical data [2, 3].

  7. 7.

    Although the authors of Ref. [58] have identified their compounds as [P(Pc)(OH)2]OH in their report, a neutral composition is considered more likely on the basis of experimental lines of evidence provided in the later report [57]. Note that both papers reported the same tetra-tert-butyl derivative.

  8. 8.

    Protonation at meso nitrogen atom(s) gives rise to a significant redshift and splitting of the Q-band (Sect. 3.2.5.2).

  9. 9.

    The MLCT transition can be understood as the simultaneous occurrence of metal-centered oxidation, FeII to FeIII, and ligand-centered reduction, pc2− to pc3−. In contrast, LMCT can be understood as the simultaneous occurrence of metal-centered reduction and ligand-centered oxidation [47].

  10. 10.

    Derivatives of lead and bismuth with a higher oxidation state are unknown.

  11. 11.

    Refer to Sect. 1.1.4 for the definition of HOMO and LUMO.

  12. 12.

    A sharp Faraday A-term is observed in each corresponding MCD spectrum.

  13. 13.

    Note that the fusion of benzo groups to the periphery of TAP derivatives (i.e., ring expansion from TAP to Pc) contributes not only to the expansion of the π-conjugation system but also to enhancing the imbalance between the two highest occupied frontier orbitals (a1u and a2u). See Sect. 2.2.7.

  14. 14.

    It has been mentioned in Sect. 3.2.3.2 that the appearance of a single Q-band for the structural intermediate of the phthalocyanine and naphthalocyanine derivatives (compound 2 in Fig. 3.12 righy) was predicted using SAP theory.

  15. 15.

    As mentioned in Sect. 2.2.8, the intensity of B-terms is larger as the two excited states are closer in energy.

  16. 16.

    States can be degenerate when the molecular symmetry is not lower than C3.

  17. 17.

    Only monomers and dimers contribute to the absorption spectra (Fig. 3.14) within this concentration range because sharp isosbestic points are seen in the spectral changes; hence, the two species are in equilibrium.

  18. 18.

    The author has learned through his activities as a scientist and an article reviewer that a considerable number of people (including experts) believe that highly aggregating phthalocyanines are poorly soluble in common solvents or that highly soluble phthalocyanines are nonaggregating. However, this is not always true. For example, the octa(alkynyl)-substituted derivative in Fig. 3.14 is highly soluble (its solubility reaches almost 10−2 M) but it also aggregates even in dilute solutions (ca. 10−5 M) as illustrated above. On the other hand, the SbV complex of unsubstituted Pc is not very soluble (at most, 10−4 M) whereas its aggregation could not be detected by optical absorption spectroscopy using an optical cell of 1 mm path length up to the upper limit of the concentration range studied. Thus, having good solubility is one thing and being nonaggregating is another, at least with respect to phthalocyanines.

  19. 19.

    J-aggregates show their main band at a red flank of the monomer band, but the converse is not necessarily true. A number of phthalocyanines show an additional band at a wavelength longer than that of the monomer Q-band owing to acid-base equilibria involving the macrocycle (Sect. 3.2.5.2), electron transfer (Sect. 3.2.6.1), etc. Special care has to be taken when assigning such extra bands at longer wavelengths as “J-aggregates” particularly in the case of nondonor solvents (Sect. 3.2.5.2).

  20. 20.

    Readers are reminded that the Lambert-Beer plot must include the zero point because the absorbance attributed to the compound must be zero when its concentration is zero. Nevertheless, a number of authors have concluded a lack of aggregation of their compounds on the basis of the linear Lambert-Beer plot within a narrow concentration range excluding the zero point. The same plot including the zero point could be nonlinear.

  21. 21.

    Actually, this is the distance between the planes composed of the four pyrrole nitrogen atoms in each macrocyclic ligand.

  22. 22.

    The splitting of the Q-band can be explained by exciton coupling (one is assigned as an allowed transition and the other weaker one is due to the forbidden transition that borrowed intensity from vibronic transition). However, the increase in the magnitude of the splitting with decreasing ionic radius is much steeper than expected from the change in the interplanar distance (Eq. 3.1).

  23. 23.

    This model also successfully explains the spectral properties of a series of lanthanoid(III) derivatives of neutral double-decker phthalocyanines [M(pc2−)(pc)] and [M(pc)] +2 as well as their redox potentials.

  24. 24.

    In these works, the authors have tried to explain the splitting on the basis of the exciton coupling alone.

  25. 25.

    The authors reported that the absorption spectra of the Si–Si dimers are very similar to those of tetrabenzotriazacorroles (Sect. 3.3.3).

  26. 26.

    We do not consider protonation at peripheral substituents or axial ligands because they are far from the innermost 16-membered ring, and detectable spectral changes are unlikely to be observed. An example of spectral changes associated with protonation at the axial ligand has been described elsewhere (Sect. 3.2.1; Fig. 3.3).

  27. 27.

    See Sect. 1.2.2 for the representation of Pc(2-).

  28. 28.

    Singly oxidized phthalocyanines are more prone to molecular aggregation than unoxidized species [101, 128, 193].

  29. 29.

    SOMO = singly occupied molecular orbital. In this context, this means the HOMO from which one electron has been removed by oxidation.

  30. 30.

    Note that the formal representation, pc(2-) and pc(-), used to denote oxidation states of the macrocyclic ligands is not appropriate in this case because their π conjugation systems are not independent of each other (Sect. 3.2.4.6). However, we adopt this conventional formulation instead of pc2(3-) to avoid unnecessary confusion.

  31. 31.

    The Q-band of the heteroleptic dimer has been found to be degenerate on the basis of an MCD study [206, 208].

  32. 32.

    Decreasing interplanar distance gives rise to stronger π–π interaction between the two macrocycles and hence the splitting between b1 and a2 orbitals (Sect. 3.2.4.6).

  33. 33.

    The pc(3-) species are referred to as radical anions for the same reason as in the case of singly oxidized phthalocyanine pc(1-).

  34. 34.

    As this complex has a six-coordinate, octahedral geometry (the two cyanide ions are in trans positions above and below the phthalocyanine macrocyclic ligand) [223], it is convenient for investigating the effects of the solvent on the electronic transition in the macrocyclic ligand alone for the following reasons: (1) donor-solvent molecules are unlikely to coordinate to the central metal ion because of the crowded coordination geometry around the metal ion; (2) ligand substitution is unlikely to occur because of strong Co–CN and Co–N(phthalocyanine) bonding; (3) the presence of the axial ligands and the net negative charge of the complex itself should prevent the aggregation of the macrocyclic ligands owing to steric hindrance and electrostatic repulsion, respectively; (4) it has no axial ligand or peripheral substituent that can be involved in the chemical interaction, such as hydrogen bonding, with the surrounding solvent molecules.

  35. 35.

    Plots of the Q-band position only in nondonor solvents exhibit a fairly good linear correlation.

  36. 36.

    Note that the addition of salicylic acid did not change the Q-band position [224].

  37. 37.

    The MnII species fails to react with oxygen when dissolved in highly purified dry pyridine [49].

  38. 38.

    Because of the free rotation around the Si–O–Si axis, there can be more than one rotational isomer based on the difference in the torsion angle between the macrocyclic ligands.

  39. 39.

    The tilted stacking of the phthalocyanine rings with respect to the Si–O–Si axis gives rise to an oblique conformation between the two macrocyclic ligands (Fig. 3.19c).

  40. 40.

    The same compound is shown in Fig. 3.3 and has been found to be free from aggregation in ethanolic solution [30, 31].

  41. 41.

    An aggregation phenomenon would give a convex curve (see Fig. 3.14 inset, for example) in the Lambert-Beer plot.

  42. 42.

    The metal-free triazacorrole derivatives (corrolazines) and their transition metal complexes are known [for example, 245, 246]. Note that the phosphorus complexes of tetrabenzocorrolazine used to be considered as PIII derivatives of phthalocyanines (which are still unknown).

References

  1. H. Isago, Y. Kagaya, H. Fujita, T. Sugimori, Dyes Pigm 88, 187–194 (2011)

    CAS  Google Scholar 

  2. H. Isago, Y. Kagaya, Bull. Chem. Soc. Jpn. 67, 383–389 (1994)

    CAS  Google Scholar 

  3. H. Isago, Y. Kagaya, Bull. Chem. Soc. Jpn. 67, 3212–3215 (1994)

    CAS  Google Scholar 

  4. Y. Kagaya, H. Isago, Chem. Lett. 1957–1960 (1994)

    Google Scholar 

  5. H. Isago, Y. Kagaya, S.-I. Nakajima, Chem. Lett. 32, 112–113 (2003)

    CAS  Google Scholar 

  6. H. Isago, Chem. Commun. 1864–1865 (2003)

    Google Scholar 

  7. G. Knör, Inorg. Chem. 35, 7916–7918 (1996)

    Google Scholar 

  8. D.K. Modibane, T. Nyokong, Polyhedron 28, 479–484 (2009)

    CAS  Google Scholar 

  9. H. Isago, Y. Kagaya, Inorg. Chem. 51, 8447–8454 (2012)

    CAS  Google Scholar 

  10. J.P. Fox, D.P. Goldberg, Inorg. Chem. 42, 8181–8191 (2003)

    CAS  Google Scholar 

  11. N. Kobayashi, T. Furuyama, K. Satoh, J. Am. Chem. Soc. 133, 19642–19645 (2011)

    CAS  Google Scholar 

  12. M.J. Stillman, T. Nyokong, in Phthalocyanines: Properties and Applications, vol. 1, ed. by C.C. Leznoff, A.B.P. Lever (VCH, New York, 1989), pp. 133–289

    Google Scholar 

  13. H. Isago, in Phthalocyanines as Functional Dyes (in Japanese), ed. by R. Hirohashi, K. Sakamoto, E. Okumura (IPC, Tokyo, 2004), pp. 141–198

    Google Scholar 

  14. N. Kobayashi, T. Fukuda, in Handbook of Porphyrin Science, vol. 9, ed. by K.M. Kadish, K.M. Smith, R. Guilard (World Science Publishing, USA, 2010), p. 1

    Google Scholar 

  15. M. Gorsch, A. Kienast, H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 623, 1433–1440 (1998)

    Google Scholar 

  16. M.J. Stillman, A.J. Thomson, J. Chem. Soc., Faraday Trans. II 70, 805–814 (1974)

    CAS  Google Scholar 

  17. H. Homborg, K.S. Murray, Z. Anorg, Allg. Chem. 517, 149–160 (1984)

    CAS  Google Scholar 

  18. A. MacCragh, W.S. Koski, J. Am. Chem. Soc. 85, 2375–2376 (1963)

    CAS  Google Scholar 

  19. G. Fu, Y. Fu, K. Jayaraj, A.B.P. Lever, Inorg. Chem. 29, 4090–4095 (1990)

    CAS  Google Scholar 

  20. A.B.P. Lever, Adv. Inorg. Chem. Radiochem. 7, 27–114 (1965)

    CAS  Google Scholar 

  21. J.S. Anderson, E.F. Bradbrook, A.H. Cook, R.P. Linstead, J. Chem. Soc. 1151–1156

    Google Scholar 

  22. L. Edwards, M. Gouterman, J. Mol. Spectrosc. 33, 292–310 (1970)

    CAS  Google Scholar 

  23. M.J. Stillman, A.J. Thomson, J. Chem. Soc., Faraday Trans. II 70, 790–804 (1974)

    CAS  Google Scholar 

  24. H. Homborg, W. Kalz, Z. Naturforsch. Sect. B 39, 1478–1489 (1984)

    Google Scholar 

  25. H. Homborg, W. Kalz, Z. Naturforsch. Sect. B 39, 1490–1499 (1984)

    Google Scholar 

  26. J.A. Elvidge, A.B.P. Lever, J. Chem. Soc. 1257–1265 (1961)

    Google Scholar 

  27. S. Sievertsen, H. Grunewald, H. Homborg, Z. Anorg, Allg. Chem. 622, 1573–1580 (1996)

    CAS  Google Scholar 

  28. H. Sugimoto, T. Higashi, M. Mori, Chem. Lett. 801 (1982)

    Google Scholar 

  29. A.B.P. Lever, J.P. Wilshire, Inorg. Chem. 17, 1145–1151 (1978)

    CAS  Google Scholar 

  30. E.A. Ough, M.J. Stillman, Inorg. Chem. 33, 573–583 (1994)

    CAS  Google Scholar 

  31. E.A. Ough, M.J. Stillman, Inorg. Chem. 34, 4317–4325 (1995)

    CAS  Google Scholar 

  32. L.-K. Chau, C.D. England, S. Chen, N.R. Armstrong, J. Phys. Chem. 97, 2699–2706 (1993)

    CAS  Google Scholar 

  33. R.L. Stover, C.L. Thrall, R.D. Joyner, Inorg. Chem. 10, 2335–2337 (1971)

    CAS  Google Scholar 

  34. A.R. Kane, J.F. Sullivan, D.H. Kenny, M.E. Kenny, Inorg. Chem. 9, 1445–1448 (1970)

    CAS  Google Scholar 

  35. K. Schweiger, H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 624, 1298–1302 (1998)

    CAS  Google Scholar 

  36. P. Clare, F. Glockling, Inorg. Chim. Acta 14, L12 (1975)

    CAS  Google Scholar 

  37. R.D. George, A.W. Snow, P.F. McMillan, V.A. Burrows, J. Am. Chem. Soc. 114, 8286–8287 (1992)

    CAS  Google Scholar 

  38. B. Außmann, G. Ostendorp, H. Homborg, Z. Anorg, Allg. Chem. 621, 1708–1714 (1995)

    Google Scholar 

  39. K. Schweiger, H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 624, 44–50 (1998)

    CAS  Google Scholar 

  40. H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 624, 715–720 (1998)

    Google Scholar 

  41. H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 623, 292–298 (1997)

    Google Scholar 

  42. D.L. Ledson, M.V. Twigg, Inorg. Chim. Acta 13, 43–46 (1975)

    CAS  Google Scholar 

  43. H. Homborg, W. Kalz, Z. Anorg, Allg. Chem. 514, 115–119 (1984)

    CAS  Google Scholar 

  44. N.B. Subbon, L.G. Tomilova, N.A. Kostromina, E.A. Lu’kyanets, J. Gen. Chem. USSR 56, 345–348 (1986)

    Google Scholar 

  45. N.B. Subbon, L.G. Tomilova, N.A. Kostromina, E.A. Lu’kyanets, Zh. Obshch. Chem. 56, 397–400 (1986)

    Google Scholar 

  46. E. Ough, T. Nyokong, K.A.M. Creber, M.J. Stillman, Inorg. Chem. 27, 2724–2732 (1988)

    CAS  Google Scholar 

  47. A.B.P. Lever, S.R. Pickens, P.C. Minor, S. Licoccia, B.S. Ramaswamy, K. Magnell, J. Am. Chem. Soc. 103, 6800–6806 (1981)

    CAS  Google Scholar 

  48. S. Sievertsen, H. Grunewald, H. Homborg, Z. Anorg, Allg. Chem 619, 1279–1737 (1993)

    Google Scholar 

  49. A.B.P. Lever, J.P. Wilshire, S.K. Quan, Inorg. Chem. 20, 761–768 (1981)

    CAS  Google Scholar 

  50. M. Gorsch, H. Homborg, Z. Anorg, Allg. Chem. 624, 634–641 (1998)

    CAS  Google Scholar 

  51. S.J. Edmondson, P.C.H. Mitchell, Polyhedron 5, 315–317 (1986)

    CAS  Google Scholar 

  52. T. Nyokong, Polyhedron 13, 215–220 (1994)

    CAS  Google Scholar 

  53. S. Omiya, M. Tsutsui, E.F. Meyer Jr, I. Bernal, D. Cullen, Inorg. Chem. 19, 134–142 (1980)

    CAS  Google Scholar 

  54. M. Hanack, P. Vermehren, Inorg. Chem. 29, 134–136 (1990)

    CAS  Google Scholar 

  55. H. Schlehahn, H. Homborg, Z. Anorg, Allg. Chem. 621, 1558–1566 (1995)

    CAS  Google Scholar 

  56. S. Sievertsen, H. Schlehahn, H. Homborg, Z. Anorg, Allg. Chem. 619, 1064–1072 (1993)

    CAS  Google Scholar 

  57. K. Kasuga, L. Lin, M. Handa, T. Sugimori, K. Isa, K. Matsuura, Y. Takinami, Inorg. Chem. 38, 4174–4176 (1999)

    CAS  Google Scholar 

  58. J. Li, R. Subramanian, M. Hanack, Eur. J. Org. Chem. 1998, 2759–2767 (1998)

    Google Scholar 

  59. H. Isago, H. Fujita, M. Hirota, T. Sugimori, Y. Kagaya, J. Porphyrins Phthalocyanines 17, 763–771 (2013)

    CAS  Google Scholar 

  60. B.D. Berezin, Russ. J. Phys. Chem. 36, 258–261 (1962)

    Google Scholar 

  61. M. Whalley, J. Chem. Soc. 866–869 (1961)

    Google Scholar 

  62. M. Göldner, H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 624, 897–901 (1998)

    Google Scholar 

  63. S. Sievertsen, H. Homborg, Z. Anorg, Allg. Chem. 620, 1439–1442 (1994)

    CAS  Google Scholar 

  64. X. Münz, M. Hanack, Chem. Ber. 121, 235–238 (1988)

    Google Scholar 

  65. G. Ostendorp, S. Sievertsen, H. Homborg, Z. Anorg, Allg. Chem. 620, 279–289 (1994)

    CAS  Google Scholar 

  66. S. Muralidharan, G. Ferraudi, K. Schmatz, Inorg. Chem. 21, 2961–2967 (1982)

    CAS  Google Scholar 

  67. D. Dolphin, B.R. James, A.L. Murray, J.R. Thornback, Can. J. Chem. 58, 1125–1132 (1980)

    CAS  Google Scholar 

  68. W. Kobel, M. Hanack, Inorg. Chem. 25, 103–107 (1986)

    CAS  Google Scholar 

  69. H. Isago, Y. Kagaya, J. Porphyrins Phthalocyanines 13, 382–389 (2009)

    CAS  Google Scholar 

  70. H. Isago, Y. Kagaya, to be submitted

    Google Scholar 

  71. H. Isago, Y. Kagaya, Chem. Lett. 35, 8–9 (2005)

    Google Scholar 

  72. E. Cilibert, K.A. Doris, W.J. Pietro, G.M. Reisner, D.E. Ellis, I. Fragala, F.H. Herbstein, M.A. Ratner, T.J. Marks, J. Am. Chem. Soc. 106, 7748–7761 (1984)

    Google Scholar 

  73. H. Isago, N. Ishikawa, unpublished results

    Google Scholar 

  74. R. Guilard, A. Dormond, M. Belkalem, J.E. Anderson, Y.H. Liu, K.M. Kadish, Inorg. Chem. 26, 1410–1414 (1987)

    CAS  Google Scholar 

  75. K. Schweiger, M. Göldner, H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 625, 1693–1699 (1999)

    CAS  Google Scholar 

  76. K. Frick, S. Verma, J. Sundermeyer, M. Hanack, Eur. J. Inorg. Chem. 1025–1030 (2000)

    Google Scholar 

  77. A. Tutaß, M. Göldner, H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 627, 2323–2336 (2001)

    Google Scholar 

  78. D. Eastwood, L. Edwards, M. Gouterman, J. Steinfeld, J. Mol. Spectrosc. 20, 381–390 (1966)

    CAS  Google Scholar 

  79. T. Nyokong, Z. Gasyna, M.J. Stillman, Inorg. Chem. 26, 1087–1095 (1987)

    CAS  Google Scholar 

  80. D. Wöhrle, V. Schmidt, J. Chem. Soc., Dalton Trans. 549–551 (1988)

    Google Scholar 

  81. M. Gorsch, A. Franken, S. Sievertsen, H. Homborg, Z. Anorg, Allg. Chem. 621, 607–616 (1995)

    CAS  Google Scholar 

  82. N. Kobayashi, A. Muranaka, K. Ishii, Inorg. Chem. 39, 2256–2257 (2000)

    CAS  Google Scholar 

  83. T. Nyokong, M.J. Stillman, unpublished results

    Google Scholar 

  84. P. Sayer, M. Gouterman, C.R. Connell, Acc. Chem. Res. 15, 73–79 (1982)

    CAS  Google Scholar 

  85. M. Gouterman, P. Sayer, E. Shankland, J.P. Smith, Inorg. Chem. 20, 87–92 (1981)

    CAS  Google Scholar 

  86. C.C. Leznoff, in Phthalocyanines: Properties and Applications, vol. 1, ed. by A.B.P. Lever, C.C. Leznoff (VCH, New York, 1989), pp. 1–54

    Google Scholar 

  87. E.A. Luk’yanets, Electronic Spectra of Phthalocyanines and Related Compounds (in Russian) (NIOPIK, Moscow, 1989)

    Google Scholar 

  88. Y. Ikeda, H. Konami, M. Hatano, K. Mochizuki, Chem. Lett. 763–766 (1992)

    Google Scholar 

  89. N. Kobayashi, N. Sasaki, Y. Higashi, T. Osa, Inorg. Chem. 34, 1636–1637 (1995)

    CAS  Google Scholar 

  90. Y. Kagaya, H. Isago, J. Porphyrins Phthalocyanines 3, 537–543 (1999)

    CAS  Google Scholar 

  91. S.A. Mikhalenko, S.V. Barkanova, O.L. Lebedev, E.A. Luk’yanets, Zh. Obshch. Khim. 41, 2735–2738 (1971)

    CAS  Google Scholar 

  92. S.A. Mikhalenko, S.V. Barkanova, O.L. Lebedev, E.A. Luk’yanets, J. Gen. Chem. USSR 41, 2770–2773 (1974)

    Google Scholar 

  93. S.A. Mikhalenko, E.A. Luk’yanets, Zh. Obshch. Khim. 39, 2129–2136 (1969)

    CAS  Google Scholar 

  94. S.A. Mikhalenko, E.A. Luk’yanets, J. Gen. Chem. USSR 39, 2081–2086 (1969)

    Google Scholar 

  95. N. Kobayashi, H. Ogata, N. Nonaka, E.A. Lukyanets, Chem. Eur. J. 9, 5123–5134 (2003)

    CAS  Google Scholar 

  96. V.M. Derkacheva, O.L. Kaliya, E.A. Luk’yanets, Zh. Obshch. Khim. 53, 188–192 (1983)

    Google Scholar 

  97. V.M. Derkacheva, O.L. Kaliya, E.A. Luk’yanets, J. Gen. Chem. USSR 53, 163–167 (1983)

    Google Scholar 

  98. V.M. Derkacheva, E.A. Luk’yanets, Zh. Obshch. Khim. 50, 2313–2318 (1980)

    CAS  Google Scholar 

  99. V.M. Derkacheva, E.A. Luk’yanets, J. Gen. Chem. USSR 50, 1874–1878 (1980)

    Google Scholar 

  100. D. Wöhrle, G. Meyer, Makromol. Chem. 181, 2127–2135 (1980)

    Google Scholar 

  101. H. Isago, C.C. Leznoff, F.R. Ryan, R.A. Metcalfe, R. Davids, A.B.P. Lever, Bull. Chem. Soc. Jpn. 71, 1039–1047 (1998)

    CAS  Google Scholar 

  102. J. Mets, O. Schneider, M. Hanack, Inorg. Chem. 23, 1065–1071 (1984)

    Google Scholar 

  103. T. Nyokong, Z. Gasyna, M.J. Stillman, ACS Symp. Ser. 321, 309–327 (1986)

    Google Scholar 

  104. V.M. Negrimovskii, V.M. Derkacheva, O.L. Kaliya, E.A. Luk’yanets, Zh. Obshch. Khim. 61, 460–470 (1991)

    CAS  Google Scholar 

  105. V.M. Negrimovskii, V.M. Derkacheva, O.L. Kaliya, E.A. Luk’yanets, J. Gen. Chem. USSR 61, 419–428 (1991)

    Google Scholar 

  106. H. Isago, unpublished data

    Google Scholar 

  107. W. Freyer, L.Q. Minh, Monatsh. Chem. 117, 475–489 (1986)

    CAS  Google Scholar 

  108. P.A. Barrett, E.F. Bradbrook, C.E. Dent, R.P. Linstead, J. Chem. Soc. 1820–1828 (1939)

    Google Scholar 

  109. I.G. Oksengendler, N.V. Kondratenko, E.A. Luk’yanets, L.M. Yagupol’skii, Zh. Org. Khim. 14, 1046–1051 (1978)

    CAS  Google Scholar 

  110. I.G. Oksengendler, N.V. Kondratenko, E.A. Luk’yanets, L.M. Yagupol’skii, J. Org. Chem. USSR 14, 976–980 (1978)

    Google Scholar 

  111. S.A. Mikhalenko, V.M. Derkacheva, E.A. Luk’yanets, Zh. Obshch. Khim. 51, 1650–1656 (1981)

    CAS  Google Scholar 

  112. S.A. Mikhalenko, V.M. Derkacheva, E.A. Luk’yanets, J. Gen. Chem. USSR 51, 1405–1411 (1981)

    Google Scholar 

  113. L.D. Rollman, R.T. Iwamoto, J. Am. Chem. Soc. 90, 1455–1463 (1968)

    Google Scholar 

  114. L.I. Solov’eva, S.A. Mikhalenko, E.A. Chernykh, E.A. Luk’yanets, Zh. Obshch. Khim. 52, 90–101 (1982)

    Google Scholar 

  115. L.I. Solov’eva, S.A. Mikhalenko, E.A. Chernykh, E.A. Luk’yanets, J. Gen. Chem. USSR 52, 83–92 (1982)

    Google Scholar 

  116. M. Sommerauer, C. Rager, M. Hanack, J. Am. Chem. Soc. 118, 10085–10093 (1996)

    CAS  Google Scholar 

  117. D.S. Terekhov, K.J.M. Nolan, C.R. McArthur, C.C. Leznoff, J. Org. Chem. 61, 3034–3040 (1996)

    CAS  Google Scholar 

  118. C.C. Leznoff, Z. Li, H. Isago, A.M.D. D’ascanio, D.S. Terekhov, J. Porphyrins Phthalocyanines 3, 406–416 (1999)

    CAS  Google Scholar 

  119. J.O. Morley, M.H. Charlton, J. Phys. Chem. 99, 1928–1934 (1995)

    CAS  Google Scholar 

  120. T. Sugimori, S. Okamoto, N. Kotoh, M. Handa, K. Kasuga, Chem. Lett. 1200–1201 (2000)

    Google Scholar 

  121. H. Konami, M. Hatano, Chem. Lett. 1359–1362 (1988)

    Google Scholar 

  122. I. Chambrier, M.J. Cook, M.T. Wood, Chem. Commun. 2133–2134 (2000)

    Google Scholar 

  123. N. Kobayashi, T. Fukuda, K. Ueno, H. Ogino, J. Am. Chem. Soc. 123, 10740–10741 (2001)

    CAS  Google Scholar 

  124. T. Fukuda, K. Ono, S. Homma, N. Kobayashi, Chem. Lett. 735–736 (2003)

    Google Scholar 

  125. N. Kobayashi, S.-I. Nakajima, T. Osa, Inorg. Chim. Acta 210, 131–133 (1993)

    CAS  Google Scholar 

  126. N. Kobayashi, S.-I. Nakajima, H. Ogata, T. Fukuda, Chem. Eur. J. 10, 6294–6312 (2004)

    CAS  Google Scholar 

  127. H. Konami, Y. Ikeda, M. Hatano, K. Mochizuki, Mol. Phys. 80, 153–160 (1993)

    CAS  Google Scholar 

  128. N. Kobayashi, H. Miwa, H. Isago, T. Tomura, Inorg. Chem. 38, 479–485 (1999)

    CAS  Google Scholar 

  129. N. Kobayashi, H. Konami, in Phthalocyanines: Properties and Applications, ed. by C.C. Leznoff, A.B.P. Lever (VCH, New York, 1996), pp. 343–404

    Google Scholar 

  130. N. Kobayashi, J. Mack, K. Ishii, M.J. Stillman, Inorg. Chem. 41, 5350–5363 (2002)

    CAS  Google Scholar 

  131. W.A. Nevin, W. Liu, A.B.P. Lever, Can. J. Chem. 65, 855–858 (1987)

    CAS  Google Scholar 

  132. A.R. Monahan, J.A. Brado, A.F. Deluca, J. Phys. Chem. 73, 1994–1996 (1972)

    Google Scholar 

  133. A.R. Monahan, J.A. Brado, A.F. Deluca, J. Phys. Chem. 76, 446–449 (1972)

    CAS  Google Scholar 

  134. H. Isago, Y. Kagaya, Y. Oyama, H. Fujita, T. Sugimori, J. Inorg. Biochem. 111, 91–98 (2012)

    CAS  Google Scholar 

  135. M. Kasha, H.R. Rawls, M.A. El-Bayoumi, Pure Appl. Chem. 11, 371–392 (1965)

    CAS  Google Scholar 

  136. N. Kobayashi, A.B.P. Lever, J. Am. Chem. Soc. 109, 7433–7441 (1987)

    CAS  Google Scholar 

  137. Z. Gasyna, N. Kobayashi, M.J. Stillman, J. Chem. Soc. Dalton Trans. 2397–2405 (1989)

    Google Scholar 

  138. N. Kobayashi, F. Furuya, G.-C. Yug, H. Wakita, M. Yokomizo, N. Ishikawa, Chem. Eur. J. 8, 1474–1484 (2002)

    CAS  Google Scholar 

  139. Z. Ou, J. Shen, K.M. Kadish, Inorg. Chem. 45, 9569–9579 (2006)

    CAS  Google Scholar 

  140. L.A. Bottomley, C. Ercolani, J.-N. Gorce, G. Pennesi, G. Rossi, Inorg. Chem. 25, 2338–2342 (1986)

    CAS  Google Scholar 

  141. S. Sievertsen, H. Homborg, Z. Anorg, Allg. Chem. 620, 1601–1606 (1994)

    CAS  Google Scholar 

  142. K. Oniwa, S. Shimizu, Y. Shiina, T. Fukuda, N. Kobayashi, Chem. Commun. 49, 8341–8343 (2013)

    CAS  Google Scholar 

  143. T. Kaneko, T. Arai, K. Tokumaru, D. Matsunaga, H. Sakuragi, Chem. Lett. 345–346 (1996)

    Google Scholar 

  144. M. Yoon, Y. Cheon, D. Kim, Photochem. Photobiol. 58, 31–36 (1993)

    CAS  Google Scholar 

  145. A. Okada, H. Segawa, J. Am. Chem. Soc. 125, 2792–2796 (2003). (and references therein)

    CAS  Google Scholar 

  146. K. Kameyama, M. Morisue, A. Satake, Y. Kobuke, Angew. Chem. Int. Ed. 44, 4763–4766 (2005)

    CAS  Google Scholar 

  147. W.A. Nevin, M.R. Hemstead, W. Liu, C.C. Leznoff, A.B.P. Lever, Inorg. Chem. 26, 570–577 (1987)

    CAS  Google Scholar 

  148. S.M. Marcuccio, P.I. Svirskaya, S. Greenberg, A.B.P. Lever, C.C. Leznoff, Can. J. Chem. 63, 3057–3069 (1985)

    CAS  Google Scholar 

  149. E.S. Dodsworth, A.B.P. Lever, P. Seymour, C.C. Leznoff, J. Phys. Chem. 89, 5698–5705 (1985)

    CAS  Google Scholar 

  150. H. Lam, S.M. Marcuccio, P.I. Svirskaya, S. Greenberg, A.B.P. Lever, C.C. Leznoff, R.L. Cerny, Can. J. Chem. 67, 1087–1097 (1989)

    CAS  Google Scholar 

  151. W.E. Bennett, D.E. Broberg, N.C. Baenziger, Inorg. Chem. 12, 930–936 (1973)

    CAS  Google Scholar 

  152. O. Ohno, N. Ishikawa, H. Matsuzawa, Y. Kaizu, H. Kobayashi, J. Phys. Chem. 93, 1713–1718 (1989)

    CAS  Google Scholar 

  153. N. Ishikawa, O. Ohno, Y. Kaizu, H. Kobayashi, J. Phys. Chem. 96, 8832–8839 (1992)

    CAS  Google Scholar 

  154. N. Kobayashi, Coord. Chem. Rev. 227, 129–152 (2002)

    CAS  Google Scholar 

  155. H. Isago, M. Shimoda, Chem. Lett. 147–150 (1992)

    Google Scholar 

  156. M.S. Haghighi, C.L. Teske, H. Homborg, Z. Anorg, Allg. Chem. 608, 73–80 (1992)

    CAS  Google Scholar 

  157. P.N. Moskalev, G.N. Shapkin, A.N. Darovskikh, Russ. J. Inorg. Chem. 24, 188–192 (1979)

    Google Scholar 

  158. P.N. Moskalev, G.N. Shapkin, A.N. Darovskikh, Zh Neorg, Khim 24, 340–346 (1979)

    CAS  Google Scholar 

  159. P.N. Moskalev, N.I. Alimova, Russ. J. Inorg. Chem. 20, 1474–1477 (1975)

    Google Scholar 

  160. P.N. Moskalev, N.I. Alimova, Zh Neorg, Khim 20, 2664–2668 (1975)

    CAS  Google Scholar 

  161. L.G. Tomilova, N.A. Ovchinnikova, E.A. Luk’yanets, J. Gen. Chem. USSR 57, 1880−1883 (1987)

    Google Scholar 

  162. L.G. Tomilova, N.A. Ovchinnikova, E.A. Luk’yanets, Zh. Obshch. Khim. 57, 2100–2104 (1987)

    CAS  Google Scholar 

  163. N.A. Ovchinnikova, L.G. Tomilova, N.B. Seregina, V.V. Minin, G.M. Larin, E.A. Luky’anets, J Gen Chem. USSR 62, 1340–1345 (1992)

    Google Scholar 

  164. N.A. Ovchinnikova, L.G. Tomilova, N.B. Seregina, V.V. Minin, G.M. Larin, E.A. Luk’yanets, Zh. Obshch. Khim. 62, 1631–1638 (1992)

    CAS  Google Scholar 

  165. G. Ostendorp, H. Homborg, Z. Anorg, Allg. Chem. 622, 1358–1364 (1998)

    Google Scholar 

  166. G. Ostendorp, H. Homborg, Z. Anorg, Allg. Chem. 622, 873–880 (1998)

    Google Scholar 

  167. H. Hückstädts, A. Tutaß, M. Göldner, U. Cornelissen, H. Homborg, Z. Anorg, Allg. Chem. 627, 485–497 (2001)

    Google Scholar 

  168. K. Takahashi, J. Shimoda, M. Itoh, Y. Fuchita, H. Osawa, Chem. Lett. 173–174 (1998)

    Google Scholar 

  169. T. Fukuda, T. Biyajima, N. Kobayashi, J. Am. Chem. Soc. 132, 6278–6279 (2010)

    CAS  Google Scholar 

  170. H. Konami, M. Hatano, A. Tajiri, Chem. Phys. Lett. 166, 605–608 (1990)

    CAS  Google Scholar 

  171. H. Hückstädt, H. Homborg, Z. Anorg, Allg. Chem. 623, 369–378 (1997)

    Google Scholar 

  172. H. Hückstädt, C. Bruhn, H. Homborg, J. Porphyrins Phthalocyanines 1, 367–378 (1997)

    Google Scholar 

  173. M. Göldner, H. Hückstädt, K.S. Murray, B. Moubaraki, H. Homborg, Z. Anorg, Allg. Chem. 624, 288–294 (1998)

    Google Scholar 

  174. H. Isago, H. Fujita, J. Porphyrins Phthalocyanines 17, 447–453 (2013)

    CAS  Google Scholar 

  175. M.E. Anderson, A.G. Barrett, B.M. Hoffman, Inorg. Chem. 38, 6143–6151 (1999)

    CAS  Google Scholar 

  176. K.A. Martin, M.J. Stillman, Inorg. Chem. 19, 2473–2475 (1980)

    CAS  Google Scholar 

  177. A. Ogunsipe, T. Nyokong, J. Mol. Struct. 689, 89–97 (2004)

    CAS  Google Scholar 

  178. P.A. Stuzhin, J. Porphyrins Phthalocyanines 3, 500–513 (1999)

    CAS  Google Scholar 

  179. P.A. Stuzhin, in Phthalocyanines—Properties and Applications, vol. 4, ed. by C.C. Leznoff, A.B.P. Lever (VCH, New York, 1996) pp. 19–77

    Google Scholar 

  180. P.A. Bernstein, A.B.P. Lever, Inorg. Chim. Acta 198200, 543–555 (1992)

    Google Scholar 

  181. V.M. Derkacheva, S.S. Iodko, O.L. Kaliya, E.A. Luk’yanets, J. Gen. Chem. USSR 51, 1998–2002 (1981)

    Google Scholar 

  182. V.M. Derkacheva, S.S. Iodko, O.L. Kaliya, E.A. Luk’yanets, Zh. Obshch. Khim. 51, 2319–2324 (1981)

    CAS  Google Scholar 

  183. O.L. Levedev, E.A. Luk’yanets, V.A. Puchnova, Opt. Spectrosc. 30, 347–349 (1971)

    Google Scholar 

  184. O.L. Levedev, E.A. Luk’yanets, V.A. Puchnova, Opt. Spektrosc. 30, 640–643 (1971)

    Google Scholar 

  185. S. Gaspard, M. Verdaguer, G. Viovy, J. Chem. Res. (S) 271 (1979)

    Google Scholar 

  186. AKh Khanamiryan, N. Bhardwaj, C.C. Leznoff, J. Porphyrins Phthalocyanines 4, 484–490 (2000)

    CAS  Google Scholar 

  187. A.B.P. Lever, E.R. Milaeva, G. Speier, in PhthalocyaninesProperties and Applications, vol. 3, ed. by Leznoff, C.C., Lever, A.B.P. (VCH, New York, 1993), pp. 1–69

    Google Scholar 

  188. M.J. Stillman, in Phthalocyanines—Properties and Applications, vol. 3, ed. by C.C. Leznoff, A.B.P. Lever (VCH, New York, 1993), pp. 227–296

    Google Scholar 

  189. H. Isago, J. Porphyrins Phthalocyanines 10, 1125–1131 (2006)

    CAS  Google Scholar 

  190. E. Ough, Z. Gasyna, M.J. Stillman, Inorg. Chem. 30, 2301–2310 (1991)

    CAS  Google Scholar 

  191. H. Homborg, Z. Anorg, Allg. Chem. 507, 35–50 (1983)

    CAS  Google Scholar 

  192. T. Nyokong, Z. Gasyna, M.J. Stillman, Inorg. Chem. 26, 548–553 (1987)

    CAS  Google Scholar 

  193. H. Homborg, Q. Kalz, Z. Naturforsch. Sect. B 33, 1067–1071 (1978)

    Google Scholar 

  194. E. Orti, J.L. Bredas, C. Clarisse, J. Chem. Phys. 92, 1228–1235 (1990)

    CAS  Google Scholar 

  195. J. Mack, M.J. Stillman, J. Phys. Chem. 99, 7935–7945 (1995)

    CAS  Google Scholar 

  196. J. Mack, M.J. Stillman, Coord. Chem. Rev. 219–221, 993–1032 (2001)

    Google Scholar 

  197. N. Ishikawa, Y. Kaizu, Chem. Phys. Lett. 339, 125–132 (2001)

    CAS  Google Scholar 

  198. T. Nyokong, Z. Gasyna, M.J. Stillman, Inorg. Chim. Acta 112, 11–15 (1986)

    CAS  Google Scholar 

  199. M.M. Nicholson, in Phthalocyanines—Properties and Applications, vol. 3, ed. by C.C. Leznoff, A.B.P. Lever (VCH, New York, 1993), pp. 71–118

    Google Scholar 

  200. P. Turek, P. Petit, J.J. Andre, R. Evan, B. Boudjema, G. Guillaud, M. Maitrot, J. Am. Chem. Soc. 109, 5119–5122 (1987)

    CAS  Google Scholar 

  201. H. Isago, J. Porphyrins Phthalocyanines 12, 861–869 (2012)

    Google Scholar 

  202. G. Ostendorp, H. Homborg, Z. Anorg, Allg. Chem. 622, 1358–1364 (1996)

    CAS  Google Scholar 

  203. A. De Cian, M. Moussavi, J. Fischer, R. Weiss, Inorg. Chem. 24, 3162–3167 (1985)

    Google Scholar 

  204. N. Ishikawa, O. Ohno, Y. Kaizu, Chem. Phys. Lett. 180, 51–56 (1991)

    CAS  Google Scholar 

  205. G. Ostendorp, H. Homborg, Z. Anorg, Allg. Chem. 622, 873–880 (1996)

    CAS  Google Scholar 

  206. N. Ishikawa, O. Ohno, Y. Kaizu, J. Phys. Chem. 97, 1004–1010 (1993)

    CAS  Google Scholar 

  207. C.L. Dunford, B. Williamson, E. Krausz, J. Phys. Chem. A 104, 3537–3543 (2000)

    CAS  Google Scholar 

  208. J.S. Shirk, J.R. Lindle, F.J. Bartoli, M.E. Boyle, J. Phys. Chem. 96, 5847–5852 (1992)

    CAS  Google Scholar 

  209. H. Sugimoto, M. Mori, H. Masuda, T. Taga, Chem. Commun. 962–963 (1986)

    Google Scholar 

  210. G. Ostendorp, H.W. Rotter, H. Homborg, Z. Anorg, Allg. Chem. 622, 235–244 (1996)

    CAS  Google Scholar 

  211. T. Fukuda, K. Hata, N. Ishikawa, J. Am. Chem. Soc. 134, 14698–14701 (2012)

    CAS  Google Scholar 

  212. D.W. Clack, J.R. Yandle, Inorg. Chem. 11, 1738–1742 (1972)

    CAS  Google Scholar 

  213. J. Mack, M.J. Stillman, J. Am. Chem. Soc. 116, 1292–1304 (1994)

    CAS  Google Scholar 

  214. J. Mack, S. Kirkby, E.A. Ough, M.J. Stillman, Inorg. Chem. 31, 1717–1719 (1992)

    CAS  Google Scholar 

  215. J. Mack, M.J. Stillman, Inorg. Chem. 36, 413–425 (1997)

    CAS  Google Scholar 

  216. H. Isago, Y. Kagaya, Bull. Chem. Soc. Jpn. 69, 1281–1288 (1996)

    CAS  Google Scholar 

  217. E.W.Y. Wong, D.B. Leznoff, J. Porphyrins Phthalocyanines 16, 154–162 (2012)

    CAS  Google Scholar 

  218. MdH Zahir, Y. Kagaya, H. Isago, T. Furubayashi, Inorg. Chim. Acta 357, 2755–2758 (2004)

    CAS  Google Scholar 

  219. T. Harazono, I. Takagishi, Bull. Chem. Soc. Jpn. 66, 1016–1023 (1993)

    CAS  Google Scholar 

  220. H. Isago, Y. Kagaya, A. Matsushita, Chem. Lett. 33, 862–863 (2004)

    CAS  Google Scholar 

  221. T. Inabe, Y. Maruyama, Bull. Chem. Soc. Jpn. 63, 2273–2280 (1990)

    CAS  Google Scholar 

  222. P. Suppan, J. Photochem. Photobiol. Sect. A 50, 293–330 (1990)

    CAS  Google Scholar 

  223. H. Isago, K. Miura, Y. Oyama, J. Inorg. Biochem. 102, 380–387 (2008)

    CAS  Google Scholar 

  224. H. Isago, K. Miura, M. Kanesato, J. Photochem. Photobiol. A 197, 313–320 (2008)

    CAS  Google Scholar 

  225. A.B.P. Lever, J.P. Wilshire, S.K. Quan, J. Am. Chem. Soc. 101, 3868–3869 (1979)

    Google Scholar 

  226. Ot. E. Sielcken, M.M. van Tillborg, M.F.M. Roks, R. Hendricks, W. Drenth, R.J.M. Nolte, J. Am. Chem. Soc. 109, 4261–4265 (1987)

    Google Scholar 

  227. A. Ferencz, D. Neher, M. Schulze, G. Wegner, L. Viaene, F.C. De Schryver, Chem. Phys. Lett. 245, 23–29 (1995)

    CAS  Google Scholar 

  228. L. Oddos-Marcel, F. Madeore, A. Bock, D. Neher, A. Ferencz, H. Rengel, G. Wegner, C. Kryschi, H.P. Trommsdorff, J. Phys. Chem. 100, 11850–11856 (1996)

    CAS  Google Scholar 

  229. J. Kleinwächter, M. Hanack, J. Am. Chem. Soc. 119, 10684–10695 (1997)

    Google Scholar 

  230. Z. Li, M. Lieberman, Inorg. Chem. 40, 932–939 (2001)

    CAS  Google Scholar 

  231. J. Ern, A. Bock, L. Oddos-Marcel, H. Rengel, G. Wegner, H.P. Trommsdorf, C. Kryschi, J. Phys. Chem. A 103, 2446–2450 (1999)

    CAS  Google Scholar 

  232. N. Kobayashi, T. Ishizaki, K. Ishii, H. Konami, J. Am. Chem. Soc. 121, 9096–9110 (1999)

    CAS  Google Scholar 

  233. N. Kobayashi, Bull. Chem. Soc. Jpn. 75, 1–19 (2002)

    CAS  Google Scholar 

  234. C.G. Claessens, D. González-Rodríguez, T. Torres, Chem. Rev. 102, 835–853 (2002)

    CAS  Google Scholar 

  235. E.A. Cuellar, T.J. Marks, Inorg. Chem. 20, 3766–3770 (1981)

    CAS  Google Scholar 

  236. T.J. Marks, D.R. Stojakovic, J. Am. Chem. Soc. 100, 1695–1705 (1978)

    CAS  Google Scholar 

  237. T. Furuyama, Y. Ogura, K. Yoza, N. Kobayashi, Angew. Chem. Int. Ed. 51, 11110–11114 (2012)

    CAS  Google Scholar 

  238. M. Fujiki, H. Tabei, K. Isa, J. Am. Chem. Soc. 108, 1532–1536 (1986)

    CAS  Google Scholar 

  239. J. Li, L. R. Subramanian, M. Hanack, J. Chem. Soc. Chem. Commun. 679–680 (1997)

    Google Scholar 

  240. J. Mack, N. Kobayashi, Chem. Rev. 111, 281–321 (2011)

    CAS  Google Scholar 

  241. J. Mack, M. Bunya, D. Lansky, D.P. Goldberg, N. Kobayashi, Heterocycles 76, 1369–1380 (2008)

    CAS  Google Scholar 

  242. J. Liu, F. Zhang, F. Zhao, Y. Tang, X. Song, G. Yao, J. Photochem. Photobiol. Sect. A 91, 99–104 (1995)

    CAS  Google Scholar 

  243. W.D. Kerber, B. Ramdhanie, D.P. Goldberg, Angew. Chem. Int. Ed. 46, 3718–3721 (2007)

    CAS  Google Scholar 

  244. N. Kobayashi, M. Yokoyama, A. Muranaka, A. Ceulemans, Tetrahedron Lett. 45, 1755–1758 (2004)

    CAS  Google Scholar 

  245. T. Birnbaum, T. Hahn, C. Martin, J. Kortus, M. Fronk, F. Lungwitz, D.R.T. Zahn, G. Salvan, J. Phys. Condens. Matter 26, 104201–104212 (2014)

    Google Scholar 

  246. F.H. Moser, A.L. Thomas, The Phthalocyanines, vol. 1 (CRC Press, Bocca Raton, 1983)

    Google Scholar 

  247. J.H. Sharp, M. Abkowitz, J. Phys. Chem. 77, 477–481 (1973)

    CAS  Google Scholar 

  248. A. Hoshino, Y. Takenaka, H. Miyaji, Acta Crystallogr. Sect. B 59, 393–403 (2003)

    Google Scholar 

  249. A. Hoshino, Y. Takenaka, H. Miyaji, C.J. Brown, J. Chem. Soc. A 2488–2493 (1968)

    Google Scholar 

  250. J. Mizuguchi, G. Rihs, H.R. Karfunkel, J. Phys. Chem. 44, 16217–16227 (1995)

    Google Scholar 

  251. J. Mizuguchi, S. Matsumoto, J. Phys. Chem. A 103, 614–616 (1999)

    CAS  Google Scholar 

  252. A. Endo, S. Matsumoto, J. Mizuguchi, J. Phys. Chem. A 103, 8193–8199 (1999)

    CAS  Google Scholar 

  253. J. Mizuguchi, Shikizai 72, 510–514 (1999)

    Google Scholar 

  254. K. Nakai, K. Ishii, N. Kobayashi, H. Yonehara, C. Pac, J. Phys. Chem. B 107, 9749–9755 (2003)

    CAS  Google Scholar 

  255. M. Ottmar, T. Ichisaka, L.R. Subramanian, M. Hanack, Y. Shirota, Chem. Lett. 788–789 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Isago .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 National Institute for Materials Science, Japan. Published by Springer Japan

About this chapter

Cite this chapter

Isago, H. (2015). Real Optical Absorption Spectra Observed in Laboratories. In: Optical Spectra of Phthalocyanines and Related Compounds. NIMS Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55102-7_3

Download citation

Publish with us

Policies and ethics