Changeover of the Thermodynamic Behavior for Hydrogen Storage in Rh with Increasing Nanoparticle Size

  • Kohei Kusada
Part of the Springer Theses book series (Springer Theses)


The author first reports the hydrogen storage properties of Rh nanoparticles having a diameter over 10 nm and the change in the temperature dependences of hydrogen storage based on particle sizes of Rh nanoparticles. Hydrogen storage was investigated by hydrogen pressure-composition isotherm and solid-state 2H NMR measurements. The author demonstrates that Rh nanoparticles with dimensions of ~10 nm absorb hydrogen similar to smaller Rh nanoparticles, however the enthalpy of hydrogen storage in Rh nanoparticles is changed from exothermic to endothermic with increasing particle size, with a critical size between 7.1 and 10.5 nm. The thermodynamics of hydrogen storage in Rh can be tuned by controlling the particle size.


Hydrogen Absorption Hydrogen Storage Increase Particle Size Hydrogen Storage Material Hydrogen Storage Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Holleck GL (1970) Diffusion and solubility of hydrogen in palladium and palladium-silver alloys. J Phys Chem 74:503–511CrossRefGoogle Scholar
  2. 2.
    Pundt A, Kirchheim R (2006) Hydrogen in metals: microstructural aspects. Ann Rev Mater Res 36:555–608CrossRefGoogle Scholar
  3. 3.
    Boddien A, Mellmann D, Gärtner F, Jackstell R, Junge H, Dyson PJ, Laurenczy G, Ludwig R, Beller M (2011) Efficient dehydrogenation of formic acid using an iron catalyst. Science 333:1733–1736CrossRefGoogle Scholar
  4. 4.
    Zaluska A, Zaluski L, Stöm-Olsen JO (1999) Nanocrystalline magnesium for hydrogen storage. J Alloys Compd 288:217–225CrossRefGoogle Scholar
  5. 5.
    Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M (2008) Atomic-level Pd-Pt alloying and largely enhanced hydrogen-storage capacity in bimetallic nanoparticles reconstructed from core/shell structure by a process of hydrogen absorption/desorption. J Am Chem Soc 130:5576–5577Google Scholar
  6. 6.
    Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M (2008) On the nature of strong hydrogen atom trapping inside Pd nanoparticles. J Am Chem Soc 130:1828–1829CrossRefGoogle Scholar
  7. 7.
    Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M (2008) Hydrogen absorption in the core/shell interface of Pd/Pt nanoparticles. J Am Chem Soc 130:1818–1819CrossRefGoogle Scholar
  8. 8.
    Zlotea C, Campesi R, Cuevas F, Leroy E, Dibandjo P, Volkringer C, Loiseau T, Férey G, Latroche M (2010) Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties. J Am Chem Soc 132:2991–2997CrossRefGoogle Scholar
  9. 9.
    Zlotea C, Cuevas F, Paul-Boncour V, Leroy E, Dibandjo P, Gadiou R, Vix-Guterl C, Latroche M (2010) Size-dependent hydrogen sorption in ultrasmall Pd clusters embedded in a mesoporous carbon template. J Am Chem Soc 132:7720–7729CrossRefGoogle Scholar
  10. 10.
    Kubo R (1962) Electronic properties of metallic fine particles. I. J Phys Soc Japan 17:975–986CrossRefGoogle Scholar
  11. 11.
    Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873CrossRefGoogle Scholar
  12. 12.
    Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592CrossRefGoogle Scholar
  13. 13.
    Yamauchi M, Ikeda R, Kitagawa H, Takata M (2008) Nanosize effects on hydrogen storage in palladium. J Phys Chem C 112:3294–3299CrossRefGoogle Scholar
  14. 14.
    Kusada K, Yamauchi M, Kobayashi H, Kitagawa H, Kubota Y (2010) Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd. J Am Chem Soc 132:15896–15898CrossRefGoogle Scholar
  15. 15.
    Kobayashi H, Yamauchi M, Kitagawa H (2012) Finding hydrogen-storage capability in iridium induced by the nanosize effect. J Am Chem Soc 134:6893–6895CrossRefGoogle Scholar
  16. 16.
    Kobayashi H, Morita H, Yamauchi M, Ikeda R, Kitagawa H, Kubota Y, Kato K, Takata M (2011) Nanosize-induced hydrogen storage and capacity control in a non-hydride-forming element: rhodium. J Am Chem Soc 133:11034–11037CrossRefGoogle Scholar
  17. 17.
    Wicke E (1984) Electronic structure and properties of hydrides of 3d and 4d metals and intermetallics. J Less Common Met 101:17–33CrossRefGoogle Scholar
  18. 18.
    Fazle Kibria AKM, Sakamoto Y (2000) The effect of alloying of palladium with silver and rhodium on the hydrogen solubility, miscibility gap and hysteresis. Int J Hydrogen Energy 25:853–859CrossRefGoogle Scholar
  19. 19.
    Papaconstantopoulos DA, Klein BM, Economou EN, Boyer LL (1978) Band structure and superconductivity of PdDx and PdHx. Phys Rev B 17:141–150CrossRefGoogle Scholar
  20. 20.
    Yamauchi M, Kobayashi H, Kitagawa H (2009) Hydrogen storage mediated by Pd and Pt nanoparticles. ChemPhysChem 10:2566–2576CrossRefGoogle Scholar
  21. 21.
    Kobayashi H, Yamauchi M, Ikeda R, Kitagawa H (2009) Atomic-level Pd–Au alloying and controllable hydrogen-absorption properties in size-controlled nanoparticles synthesized by hydrogen reduction. Chem Commun 45:4806–4808CrossRefGoogle Scholar
  22. 22.
    Kobayashi H, Morita H, Yamauchi M, Ikeda R, Kitagawa H, Kubota Y, Kato K, Takata M, Toh S, Matsumura S (2012) Nanosize-induced drastic drop in equilibrium hydrogen pressure for hydride formation and structural stabilization in Pd–Rh solid-solution alloys. J Am Chem Soc 134:12390–12393CrossRefGoogle Scholar
  23. 23.
    El-Sanabary F, Ramaprabhu S, Weiss A (1993) Thermodynamics of hydrogen dissolved in palladium-rich Pd-Er-Ag(Au, Cu) ternary solid solution alloys. Ber Bunsenges Phys Chem 97:607–617CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Kyoto UniversityKyotoJapan

Personalised recommendations