Discovery of the Face-Centered Cubic Ruthenium Nanoparticles: Facile Size-Controlled Synthesis Using the Chemical Reduction Method

Part of the Springer Theses book series (Springer Theses)


The author reports the first discovery of pure face-centered cubic (fcc) Ru nanoparticles. Although the fcc structure does not exist in the bulk Ru phase diagram, fcc Ru was obtained at room temperature (RT) because of the nanosize effect. The author succeeded in separately synthesizing uniformly sized nanoparticles of both fcc and hcp Ru having a diameter from 2 to 5.5 nm by simple chemical reduction methods with different metal precursors. Both of the prepared fcc and hcp nanoparticles were supported on γ-Al2O3, and their catalytic activity in CO oxidation was investigated. The catalytic activity of the Ru nanoparticles in CO oxidation depends on their structure and size.


Metal Precursor Chemical Reduction Method Triethylene Glycol Transition Metal Series Atomic Number Increase 


  1. 1.
    Pettifor DG (1977) A physicist’s view of the energetics of transition metals. Calphad 1:305–324CrossRefGoogle Scholar
  2. 2.
    Saunders N, Miodownik AP, Dinsdale AT (1988) Metastable lattice stabilities for the elements. Calphad 12:351–374CrossRefGoogle Scholar
  3. 3.
    Xia H, Parthasarathy G, Luo H, Vohra YK, Ruoff AL (1990) Crystal structures of group IVa metals at ultrahigh pressures. Phys Rev B 42:6736–6738CrossRefGoogle Scholar
  4. 4.
    Hanfland M, Syassen K, Christensen NE, Novikov DL (2000) New high-pressure phases of lithium. Nature 408:174–178CrossRefGoogle Scholar
  5. 5.
    Shimizu K, Ishikawa H, Takao D, Yagi T, Amaya K (2002) Superconductivity in compressed lithium at 20 K. Nature 419:597–599CrossRefGoogle Scholar
  6. 6.
    Errandonea D, Meng Y, Häusermann D, Uchida T (2003) Study of the phase transformations and equation of state of magnesium by synchrotron x-ray diffraction. J Phys Condens Matter 15:1277–1289CrossRefGoogle Scholar
  7. 7.
    Ma Y, Eremets M, Oganov AR, Xie Y, Trojan I, Medvedev S, Lyakhov AO, Valle M, Prakapenka V (2009) Transparent dense sodium. Nature 458:182–185CrossRefGoogle Scholar
  8. 8.
    Liu Q, Fan C, Zhang R (2009) First-principles study of high-pressure structural phase transitions of magnesium. J Appl Phys 105:123505CrossRefGoogle Scholar
  9. 9.
    Tateno S, Hirose K, Ohishi Y, Tatsumi Y (2010) The structure of iron in earth’s inner core. Science 330:359–361CrossRefGoogle Scholar
  10. 10.
    Stixrude L (2012) Structure of Iron to 1 Gbar and 40,000 K. Phys Rev Lett 108:055505CrossRefGoogle Scholar
  11. 11.
    Hrubiak R, Drozd V, Karbasi A, Saxena SK (2012) High P–T phase transitions and P–V–T equation of state of hafnium. J Appl Phys 111:112616CrossRefGoogle Scholar
  12. 12.
    Xiong S, Qi W, Huang B, Wang M, Li Z, Liang S (2012) Size-temperature phase diagram of titanium nanosolids. J Phys Chem C 116:237–241CrossRefGoogle Scholar
  13. 13.
    Jesser WA, Shneck RZ, Gile WW (2004) Solid-liquid equilibria in nanoparticles of Pb-Bi alloys. Phys Rev B 69:144121CrossRefGoogle Scholar
  14. 14.
    Calvo F, Doye JPK (2004) Pressure effects on the structure of nanoclusters. Phys Rev B 69:125414–125416Google Scholar
  15. 15.
    Dong XL, Choi CJ, Kim BK (2002) Chemical synthesis of Co nanoparticles by chemical vapor condensation. Scr Mater 47:857–861CrossRefGoogle Scholar
  16. 16.
    Ling T, Xie L, Zhu J, Yu H, Ye H, Yu R, Cheng Z, Liu L, Yang G, Cheng Z, Wang Y, Ma X (2009) Icosahedral face-centered cubic fe nanoparticles: facile synthesis and characterization with aberration-corrected TEM. Nano Lett 9:1572–1576CrossRefGoogle Scholar
  17. 17.
    Kim H, Kaufman MJ, Sigmund WM, Jacques D, Andrews R (2003) Observation and formation mechanism of stable face-centered-cubic Fe nanorods in carbon nanotubes. J Mater Res 18:1104–1108CrossRefGoogle Scholar
  18. 18.
    Perkas N, Teo J, Shen S, Wang Z, Highfield J, Zhong Z, Gedaken A (2011) Supported Ru catalysts prepared by two sonication-assisted methods for preferential oxidation of CO in H2. Phys Chem Chem Phys 13:15690–15698CrossRefGoogle Scholar
  19. 19.
    Carballo JMG, Yang J, Holmen A, García-Rodríguez S, Rojas S, Ojeda M, Fierro JLG (2011) Catalytic effects of ruthenium particle size on the fischer-tropsch synthesis. J Catal 284:102–108CrossRefGoogle Scholar
  20. 20.
    Kim YH, Yim S, Park ED (2012) Selective CO oxidation in a hydrogen-rich stream over Ru/SiO2 catal. Today 185:143–150CrossRefGoogle Scholar
  21. 21.
    Strebel C, Murphy S, Nielsen RM, Nielsen JH, Chorkendorff I (2012) Probing the active sites for CO dissociation on ruthenium nanoparticles. Phys Chem Chem Phys 14:8005–8012CrossRefGoogle Scholar
  22. 22.
    Wendt S, Knapp M, Over H (2004) The role of weakly bound on-top oxygen in the catalytic CO oxidation reaction over RuO2(110). J Am Chem Soc 126:1537–1541CrossRefGoogle Scholar
  23. 23.
    Ertl G (2008) Reactions at surfaces: from atoms to complexity (nobel lecture). Angew Chem Int Ed 47:3524–3535CrossRefGoogle Scholar
  24. 24.
    Xie X, Li Y, Liu Z, Haruta M, Shen W (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458:746–749CrossRefGoogle Scholar
  25. 25.
    Kaden WE, Wu T, Kunkel WA, Anderson SL (2009) Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 326:826–829CrossRefGoogle Scholar
  26. 26.
    Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7:333–338CrossRefGoogle Scholar
  27. 27.
    Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 3:634–641CrossRefGoogle Scholar
  28. 28.
    Roth C, Benker N, Buhrmester T, Mazurek M, Loster M, Fuess H, Koningsberger DC, Ramaker DE (2005) Determination of O[H] and CO coverage and adsorption sites on PtRu electrodes in an operating PEM fuel cell. J Am Chem Soc 127:14607–14615CrossRefGoogle Scholar
  29. 29.
    Jiang H, Liu B, Akita T, Haruta M, Sakurai H, Xu Q (2009) Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. J Am Chem Soc 131:11302–11303CrossRefGoogle Scholar
  30. 30.
    Kim HY, Lee HM, Henkelman G (2012) CO oxidation mechanism on CeO2-supported Au nanoparticles. J Am Chem Soc 134:1560–1570CrossRefGoogle Scholar
  31. 31.
    Kobayashi M, Kai T, Takano N, Shiiki K (1995) The possibility of ferromagnetic BCC ruthenium. J Phys Condens Matter 7:1835–1842CrossRefGoogle Scholar
  32. 32.
    Watanabe S, Komine T, Kai T, Shiiki K (2000) First-principle band calculation of ruthenium for various phases. J Magn Magn Mater 220:277–284CrossRefGoogle Scholar
  33. 33.
    Lim B, Jiang M, Tao J, Camargo PHC, Zhu Y, Xia Y (2009) Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv Funct Mater 19:189–200CrossRefGoogle Scholar
  34. 34.
    González AL, Noguez C, Ortiz GP, Rodríguez-Gattorno G (2005) Optical absorbance of colloidal suspensions of silver polyhedral nanoparticles. J Phys Chem B 109:17512–17517CrossRefGoogle Scholar
  35. 35.
    Grass ME, Zhang Y, Butcher DR, Park JY, Li Y, Bluhm H, Bratlie KM, Zhang T, Somorjai GA (2008) A reactive oxide overlayer on rhodium nanoparticles during CO oxidation and its size dependence studied by in situ ambient-pressure x-ray photoelectron spectroscopy. Angew Chem Int Ed 47:8893–8896CrossRefGoogle Scholar
  36. 36.
    Haruta M, Tsubota S, Kobayashi T, Kageyama H, Gent MJ, Delmon B (1993) Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J Catal 144:175–192CrossRefGoogle Scholar
  37. 37.
    McCarthy E, Zahradnik J, Kuczynski GC, Carberry JJ (1975) Some unique aspects of CO oxidation on supported Pt. J Catal 39:29–35CrossRefGoogle Scholar
  38. 38.
    Over H, Kim YD, Seitsonen AP, Wendt S, Lundgren E, Schmid M, Varga P, Morgante A, Ertl G (2000) Atomic-scale structure and catalytic reactivity of the RuO2(110) surface. Science 287:1474–1476CrossRefGoogle Scholar
  39. 39.
    Gong X, Liu Z, Raval R, Hu P (2004) A systematic study of CO oxidation on metals and metal oxides: density functional theory calculations. J Am Chem Soc 126:8–9CrossRefGoogle Scholar
  40. 40.
    Reuter K, Scheffler M (2003) Composition and structure of the RuO2(110) surface in an O2 and CO environment: Implications for the catalytic formation of CO2 Phys. Rev B 68:045407–045411CrossRefGoogle Scholar
  41. 41.
    Teranishi T, Kurita R, Miyake M (2000) Shape Control of Pt Nanoparticles. J Inorg Organomet Polym 10:145–156CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Kyoto UniversityKyotoJapan

Personalised recommendations