Systematic Study of the Hydrogen Storage Properties and the CO-oxidizing Abilities of Solid Solution Alloy Nanoparticles in an Immiscible Pd–Ru System

  • Kohei Kusada
Part of the Springer Theses book series (Springer Theses)


PdxRu1–x solid solution alloy nanoparticles were successfully synthesized over the whole composition range through the chemical reduction method, although Ru and Pd are immiscible at the atomic level in the bulk state. From the XRD measurement, it was found that the dominant structure of PdxRu1–x changes from fcc to hcp with increasing Ru content. The structures of PdxRu1–x nanoparticles in the Pd composition range of 30–70 % consisted of both solid solution fcc and hcp structures, and both of two phases coexist in a single particle. In addition, the reaction of hydrogen with the PdxRu1–x nanoparticles changed from exothermic to endothermic as the Ru content increased. Furthermore, the prepared PdxRu1–x nanoparticles demonstrated extremely enhanced CO-oxidizing catalytic activity; Pd0.5Ru0.5 nanoparticles exhibit the highest catalytic activity. This activity is much higher than that of practically-used CO-oxidizing catalyst Ru and that of neighboring Rh, between Ru and Pd.


High Resolution Transmission Electron Microscopy Hydrogen Storage Metal Composition Solid Solution Alloy Triethylene Glycol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tripathi SN, Bharadwaj SR, Chandransekharaiah MS (1996) The Rh–Ru system (rhodium–ruthenium). J Phase Equil 17:362–365CrossRefGoogle Scholar
  2. 2.
    Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (1996) Binary alloy phase diagrams. ASM International, Materials ParkGoogle Scholar
  3. 3.
    Tripathi SN, Bharadwaj SR, Dharwadkar SR (1993) The Pd–Ru system (palladium–ruthenium). J Phase Equil 14:638–642CrossRefGoogle Scholar
  4. 4.
    Kusada K, Yamauchi M, Kobayashi H, Kitagawa H, Kubota Y (2010) Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd. J Am Chem Soc 132:15896–15898CrossRefGoogle Scholar
  5. 5.
    Papaconstantopoulos DA, Klein BM, Economou EN, Boyer LL (1978) Band structure and superconductivity of PdDx and PdHx. Phys Rev B 17:141–150CrossRefGoogle Scholar
  6. 6.
    Gelatt CD, Ehren-reich H, Weiss JA (1978) Transition-metal hydrides: electronic structure and the heats of formation. Phys Rev B 17:1940–1957CrossRefGoogle Scholar
  7. 7.
    Vuillemin JJ, Priestly MG (1965) De Haas-Van Alphen effect and fermi surface in palladium. Phys Rev Lett 14:307–308CrossRefGoogle Scholar
  8. 8.
    Mueller FM, Freeman AJ, Dimmock JO, Furdyna AM (1970) Electronic structure of palladium. Phys Rev B 1:4617–4634CrossRefGoogle Scholar
  9. 9.
    Wicke E (1984) Electronic structure and properties of hydrides of 3D and 4D metals and intermetallics. J Less Common Met 101:17–33CrossRefGoogle Scholar
  10. 10.
    Alefeld G, Vӧlkl J (1978) Hydrogen in metals I. Springer, Berlin, p 108Google Scholar
  11. 11.
    Alefeld G, Vӧlkl J (1978) Hydrogen in metals II. Springer, Berlin, p 73Google Scholar
  12. 12.
    Ke X, Kramer GJ, Løvvik OM (2004) The influence of electronic structure on hydrogen absorption in palladium alloys. J Phys Condens Matter 16:6267–6278CrossRefGoogle Scholar
  13. 13.
    Flanagan TB, Wang D, Noh H (1997) The effect of cycling through the hydride phase on isotherms for fcc Pd-rich alloys. J Alloys Compd 253–254:216–220CrossRefGoogle Scholar
  14. 14.
    Barlag H, Opara L, Züchner H (2002) Hydrogen diffusion in palladium based fcc alloys. J Alloys Compd 330–332:434–437CrossRefGoogle Scholar
  15. 15.
    Sonwane CG, Wilcox J, Ma YH (2006) Solubility of hydrogen in PdAg and PdAu binary alloys using density functional theory. J Phys Chem B 110:24549–24558CrossRefGoogle Scholar
  16. 16.
    Cabrera AL, Morales EL, Hansen J, Schuller K (1995) Structural changes induced by hydrogen absorption in palladium and palladium-ruthenium alloys. Appl Phys Lett 66:1216–1218CrossRefGoogle Scholar
  17. 17.
    Frölich K, Severin HG, Hempelmann R, Wicke E (1980) Local magnetic moments of ruthenium in palladium/ruthenium/hydrogen alloys. Z Phys Chem Neue Fol 119:33–52CrossRefGoogle Scholar
  18. 18.
    Szafranski AW (2003) Influence of hydrogen on the thermoelectronic power of palladium alloyed with neighbouring elements: I. Pd/Ru/H and Pd/Rh/H alloys. J Phys Condens Matter 15:3583–3592CrossRefGoogle Scholar
  19. 19.
    Perkas N, Teo J, Shen S, Wang Z, Highfield J, Zhong Z, Gedanken A (2011) Supported Ru catalysts prepared by two sonication-assisted methods for preferential oxidation of CO in H2. Phys Chem Chem Phys 13:15690–15698CrossRefGoogle Scholar
  20. 20.
    Bowker M (2007) Automotive catalysis studied by surface science. Chem Soc Rev 37:2204–2211CrossRefGoogle Scholar
  21. 21.
    Grass ME, Zhang Y, Butcher DR, Park JY, Li Y, Bluhm H, Bratlie KM, Zhang T, Somorjai GA (2008) A reactive oxide overlayer on rhodium nanoparticles during CO oxidation and its size dependence studied by in situ ambient-pressure X-ray photoelectron spectroscopy. Angew Chem Int Ed 47:8893–8896CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Grass ME, Huang W, Somorjai GA (2010) Seedless polyol synthesis and CO oxidation activity of monodisperse (111)- and (100)-oriented rhodium nanocrystals in sub-10 nm sizes. Langmuir 26:16463–16468CrossRefGoogle Scholar
  23. 23.
    Joo SH, Park JK, Renzas JR, Butcher DR, Huang W, Somorjai GA (2010) Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation. Nano Lett 10:2709–2713CrossRefGoogle Scholar
  24. 24.
    Ertl G (2008) Reactions at surfaces: from atoms to complexity (Nobel lecture). Angew Chem Int Ed 47:3524–3535CrossRefGoogle Scholar
  25. 25.
    Xiao L, Zhuang L, Liu Y, Lu J, Abruna HD (2009) Activating Pd by morphology tailoring for oxygen reduction. J Am Chem Soc 131:602–608CrossRefGoogle Scholar
  26. 26.
    Newton MA, Belver-Coldeira C, Martínez-Arias A, Fernández-García M (2007) Dynamic in situ observation of rapid size and shape change of supported Pd nanoparticles during CO/NO cycling. Nat Mater 6:528–532CrossRefGoogle Scholar
  27. 27.
    Schultz NE, Gherman BE, Cramer CJ, Truhlar DG (2006) PdnCO (n = 1,2): accurate Ab initio bond energies, geometries, and dipole moments and the applicability of density functional theory for fuel cell modeling. J Phys Chem B 110:24030–24046CrossRefGoogle Scholar
  28. 28.
    Lee HC, Potapova Y, Lee D (2012) A core-shell structured, metal–ceramic composite-supported Ru catalyst for methane steam reforming. J Power Sources 216:256–260CrossRefGoogle Scholar
  29. 29.
    McFarland E (2012) Unconventional chemistry for unconventional natural gas. Science 338:340–342CrossRefGoogle Scholar
  30. 30.
    Beutl M, Lesnik J (2001) Adsorption dynamics of hydrogen and carbon monoxide on V/Pd(111) alloy surface. Surf Sci 482–485:353–358CrossRefGoogle Scholar
  31. 31.
    Abdelsayed V, Aljarash A, El-Shall MS, Othman ZAA, Alghamdi AH (2009) Microwave synthesis of bimetallic nanoalloys and CO oxidation on ceria-supported nanoalloys. Chem Mater 21:2825–2834CrossRefGoogle Scholar
  32. 32.
    Renzas JR, Huang W, Zhang Y, Grass ME, Hoang DT, Alayoglu S, Butcher DR, Tao F, Liu Z, Somorjai GA (2011) Rh1−xPdx nanoparticle composition dependence in CO oxidation by oxygen: catalytic activity enhancement in bimetallic systems. Phys Chem Chem Phys 13:2556–2562CrossRefGoogle Scholar
  33. 33.
    Nakamura E, Sato K (2011) Managing the scarcity of chemical elements. Nat Mater 10:158–161CrossRefGoogle Scholar
  34. 34.
    Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M (2010) Atomic-level Pd-Pt alloying and largely enhanced hydrogen-storage capacity in bimetallic nanoparticles reconstructed from core/shell structure by a process of hydrogen absorption/desorption. J Am Chem Soc 132:5576–5577CrossRefGoogle Scholar
  35. 35.
    Kakade BA, Tamaki T, Ohashi H, Yamaguchi T (2012) Highly active bimetallic PdPt and CoPt nanocrystals for methanol electro-oxidation. J Phys Chem C 116:7464–7470CrossRefGoogle Scholar
  36. 36.
    Kobayashi H, Morita H, Yamauchi M, Ikeda R, Kitagawa H, Kubota Y, Kato M, Takata M, Toh S, Matsumura S (2012) Nanosize-induced drastic drop in equilibrium hydrogen pressure for hydride formation and structural stabilization in Pd-Rh solid-solution alloys. J Am Chem Soc 134:12390–12394CrossRefGoogle Scholar
  37. 37.
    Petkov V, Wanjala BN, Loukrakpam R, Luo J, Yang L, Zhong C, Shastri S (2012) Pt–Au alloying at the nanoscale. Nano Lett 12:4289–4299CrossRefGoogle Scholar
  38. 38.
    Hernández-Fernández P, Rojas S, Ocón P, Gómez de la Fuente JL, San Fabián J, Sanza J, Peña MA, García-García FJ, Terreros P, Fierro JLG (2007) Influence of the preparation route of bimetallic Pt–Au nanoparticle electrocatalysts for the oxygen reduction reaction. J Phys Chem C 111:2913–2923CrossRefGoogle Scholar
  39. 39.
    Essinger-Hileman ER, DeCicco D, Bondi JF, Schaak RE (2011) Aqueous room-temperature synthesis of Au–Rh, Au–Pt, Pt–Rh, and Pd–Rh alloy nanoparticles: fully tunable compositions within the miscibility gaps. J Mater Chem 21:11599–11604CrossRefGoogle Scholar
  40. 40.
    Denton AR, Ashcroft NW (1991) Vegard’s law. Phys Rev A 43:3161–3164CrossRefGoogle Scholar
  41. 41.
    Fukai Y (2005) The metal-hydrogen system, basic bulk properties, 2nd edn. Springer, BerlinGoogle Scholar
  42. 42.
    Yamauchi M, Ikeda R, Kitagawa H, Takata M (2008) Nanosize effects on hydrogen storage in palladium. J Phys Chem C 112:3294–3299CrossRefGoogle Scholar
  43. 43.
    Xu J, White T, Li P, He C, Yu J, Yuan W, Han Y (2010) Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation. J Am Chem Soc 132:10398–10406CrossRefGoogle Scholar
  44. 44.
    Sandoval A, Aguilar A, Louis C, Traverse A, Zanella R (2011) Bimetallic Au–Ag/TiO2 catalyst prepared by deposition–precipitation: high activity and stability in CO oxidation. J Catal 281:40–49CrossRefGoogle Scholar
  45. 45.
    Wang A, Liu J, Lin SD, Lin T, Mou C (2005) A novel efficient Au–Ag alloy catalyst system: preparation, activity, and characterization. J Catal 233:186–197CrossRefGoogle Scholar
  46. 46.
    Engel T, Ertl G (1978) A molecular beam investigation of the catalytic oxidation of CO on Pd (111). J Chem Phys 69:1267–1281CrossRefGoogle Scholar
  47. 47.
    Ladas S, Poppa H, Boudart M (1981) The adsorption and catalytic oxidation of carbon monoxide on evaporated palladium particles. Surf Sci 102:151–171CrossRefGoogle Scholar
  48. 48.
    Liu K, Wang A, Zhang T (2012) Recent advances in preferential oxidation of CO reaction over platinum group metal catalysts. ACS Catal 2:1165–1178CrossRefGoogle Scholar
  49. 49.
    Hammer B, Nørskov JK (1995) Why gold is the noblest of all the metals. Nature 376:238–240CrossRefGoogle Scholar
  50. 50.
    Hammer B, Nørskov JK (1995) Electronic factors determining the reactivity of metal surfaces. Surf Sci 343:211–220CrossRefGoogle Scholar
  51. 51.
    Nikolla E, Schwank J, Linic S (2009) Measuring and relating the electronic structures of nonmodel supported catalytic materials to their performance. J Am Chem Soc 131:2747–2754CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Kyoto UniversityKyotoJapan

Personalised recommendations