Skip to main content

Hydrogen Storage Properties of Solid Solution Alloys of Immiscible Neighboring Elements with Pd

  • Chapter
  • First Online:
Creation of New Metal Nanoparticles and Their Hydrogen-Storage and Catalytic Properties

Part of the book series: Springer Theses ((Springer Theses))

  • 724 Accesses

Abstract

Rh and Ag are the neighboring elements with Pd that is famous for a hydrogen-storage metal. Although Rh and Ag do not possess hydrogen-storage property, can Ag–Rh alloys actually storage hydrogen? Ag–Rh solid-solution alloys have not explored in the past because they do not mix each other at the atomic level even in the liquid phase. The author has used the chemical reduction method to obtain such the Ag–Rh alloys, and XRD and STEM-EDX give clear evidence that the alloys mixed at the atomic level. From the measurements of hydrogen pressure-composition isotherms and solid-state 2H NMR, The author has revealed that Ag–Rh solid-solution alloys absorb hydrogen and the total amount of hydrogen reached a maximum at the ratio of Ag:Rh = 50:50, where the electronic structure is expected to be similar to that of Pd.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turchi PEA, Drchal V, Kudrnovský J (2006) Stability and ordering properties of fcc alloys based on Rh, Ir, Pd, and Pt. Phys Rev B 74:064202-1–06420212

    Article  Google Scholar 

  2. Mena FP, DiTusa JF, van der Marel D, Aeppli G, Young DP, Damascelli A, Mydosh JA (2006) Suppressed reflectivity due to spin-controlled localization in a magnetic semiconductor. Phys Rev B 73:0852051–0852057

    Article  Google Scholar 

  3. Eagleton TS, Mallet J, Cheng X, Wang J, Chien C, Searson PC (2005) Electrodeposition of CoxPt1−x Thin Films. J Electrochem Soc 152:C27–C31

    Article  CAS  Google Scholar 

  4. Bowker M (2008) Automotive catalysis studied by surface science. Chem Soc Rev 37:2204–2211

    Article  CAS  Google Scholar 

  5. Inderwildi OR, Jenkins SJ, King DA (2008) Dynamic interplay between diffusion and reaction: nitrogen recombination on Rh{211} in car exhaust catalysis. J Am Chem Soc 130:2213–2220

    Article  CAS  Google Scholar 

  6. Guo J, Hsu A, Chu D, Chen R (2010) Improving oxygen reduction reaction activities on carbon-supported Ag nanoparticles in alkaline solutions. J Phys Chem C 114:4324–4330

    Article  CAS  Google Scholar 

  7. Cobley CM, Campbell DJ, Xia Y (2008) Tailoring the optical and catalytic properties of gold-silver nanoboxes and nanocages by introducing palladium. Adv Mater 20:748–752

    Article  CAS  Google Scholar 

  8. Holleck GL (1970) Diffusion and solubility of hydrogen in palladium and palladium-silver alloys. J Phys Chem 74:503–511

    Article  CAS  Google Scholar 

  9. Zarkevich NA, Tan TL, Johnson DD (2007) First-principles prediction of phase-segregating alloy phase diagrams and a rapid design estimate of their transition temperatures. Phys Rev B 75:104203-1–10420312

    Article  Google Scholar 

  10. Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (1996) Binary alloy phase diagrams. ASM International

    Google Scholar 

  11. Gera VB, Gupta R, Jain KP (1989) Electronic structure of III-V ternary semiconductors. J Phys Condens Matter 1:4913–4930

    Article  CAS  Google Scholar 

  12. Papaconstantopoulos DA, Klein BM, Economou EN, Boyer LL (1978) Band structure and superconductivity of PdDx and PdHx. Phys Rev B 17:141–150

    Article  CAS  Google Scholar 

  13. Fazle Kibria AKM, Sakamoto Y (2000) The effect of alloying of palladium with silver and rhodium on the hydrogen solubility, miscibility gap and hysteresis. Int J Hydrogen Energy 25:53–859

    Google Scholar 

  14. Vuillemin JJ, Priestly MG (1965) De Haas-Van Alphen effect and fermi surface in palladium. Phys Rev Lett 14:307–309

    Article  CAS  Google Scholar 

  15. Wicke E (1984) Electronic structure and properties of hydrides of 3d and 4d metals and intermetallics. J Less-Common Met 101:17–33

    Article  CAS  Google Scholar 

  16. Zhou S, Jackson GS, Eichhorn B (2007) AuPt alloy nanoparticles for CO-tolerant hydrogen activation: architectural effects in Au–Pt bimetallic nanocatalysts. Adv Funct Mater 17:3099–3104

    Article  CAS  Google Scholar 

  17. Hernández-Fernández P, Rojas S, Ocón P, Gómez de la Fuente JL, San Fabián J, Sanza J, Peña MA, García-García FJ, Terreros P, Fierro JLG (2007) Influence of the preparation route of bimetallic Pt–Au nanoparticle electrocatalysts for the oxygen reduction reaction. J Phys Chem C 111:2913–2923

    Article  Google Scholar 

  18. Lang H, Maldonado S, Stevenson KJ, Chandler BD (2004) Synthesis and characterization of dendrimer templated supported bimetallic Pt–Au nanoparticles. J Am Chem Soc 126:12949–12956

    Article  CAS  Google Scholar 

  19. Chiang I, Chen Y, Chen D (2009) Synthesis of NiAu colloidal nanocrystals with kinetically tunable properties. J Alloys Compd 468:237–245

    Article  CAS  Google Scholar 

  20. Lu D, Domen K, Tanaka K (2002) Electrodeposited Au–Fe, Au–Ni, and Au–Co alloy nanoparticles from aqueous electrolytes. Langmuir 18:3226–3232

    Article  CAS  Google Scholar 

  21. Chiang I, Chen D (2007) Synthesis of monodisperse FeAu nanoparticles with tunable magnetic and optical properties. Adv Funct Mater 17:1311–1316

    Article  CAS  Google Scholar 

  22. Dahal N, Chikan V, Jasinski J, Leppert VJ (2008) Synthesis of water-soluble iron gold alloy nanoparticles. Chem Mater 20:6389–6395

    Article  CAS  Google Scholar 

  23. Torigoe K, Nakajima Y, Esumi K (1993) Preparation and characterization of colloidal silver-platinum alloys. J Phys Chem 97:8304–8309

    Article  CAS  Google Scholar 

  24. Kobayashi H, Yamauchi M, Ikeda R, Kitagawa H (2009) Atomic-level Pd–Au alloying and controllable hydrogen-absorption properties in size-controlled nanoparticles synthesized by hydrogen reduction. Chem Commun 32:4806–4808

    Article  Google Scholar 

  25. Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M (2008) Hydrogen absorption in the core/shell interface of Pd/Pt nanoparticles. J Am Chem Soc 130:1818–1819

    Article  CAS  Google Scholar 

  26. Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M (2008) On the nature of strong hydrogen atom trapping inside Pd nanoparticles. J Am Chem Soc 130:1828–1829

    Article  CAS  Google Scholar 

  27. Yamauchi M, Ikeda R, Kitagawa H, Takata M (2008) Nanosize effects on hydrogen storage in palladium. J Phys Chem C 112:3294–3299

    Article  CAS  Google Scholar 

  28. Yamauchi M, Kobayashi H, Kitagawa H (2009) Hydrogen storage mediated by Pd and Pt nanoparticles. Chem Phys Chem 10:2566–2576

    Article  CAS  Google Scholar 

  29. Kaushik VK (1991) XPS core level spectra and auger parameters for some silver compounds. J Electron Spectrosc Relat Phenom 56:273–277

    Article  CAS  Google Scholar 

  30. Liu XJ, Gao F, Wang CP, Ishida K (2008) Thermodynamic assessments of the Ag-Ni binary and Ag-Cu-Ni ternary systems. J Electron Mater 37:210–217

    Article  Google Scholar 

  31. Raevskaya MV, Yanson IE, Tatarkina AL, Sokolova IG (1987) The effect of nickel on interaction in the copper ruthenium system. J Less-Common Met 132:237–241

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohei Kusada .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Kusada, K. (2014). Hydrogen Storage Properties of Solid Solution Alloys of Immiscible Neighboring Elements with Pd. In: Creation of New Metal Nanoparticles and Their Hydrogen-Storage and Catalytic Properties. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55087-7_2

Download citation

Publish with us

Policies and ethics