Hydrogen Storage Properties of Solid Solution Alloys of Immiscible Neighboring Elements with Pd

  • Kohei Kusada
Part of the Springer Theses book series (Springer Theses)


Rh and Ag are the neighboring elements with Pd that is famous for a hydrogen-storage metal. Although Rh and Ag do not possess hydrogen-storage property, can Ag–Rh alloys actually storage hydrogen? Ag–Rh solid-solution alloys have not explored in the past because they do not mix each other at the atomic level even in the liquid phase. The author has used the chemical reduction method to obtain such the Ag–Rh alloys, and XRD and STEM-EDX give clear evidence that the alloys mixed at the atomic level. From the measurements of hydrogen pressure-composition isotherms and solid-state 2H NMR, The author has revealed that Ag–Rh solid-solution alloys absorb hydrogen and the total amount of hydrogen reached a maximum at the ratio of Ag:Rh = 50:50, where the electronic structure is expected to be similar to that of Pd.


Hydrogen Absorption Solid Solution Phase Solid Solution Alloy Chemical Reduction Method Hydrogen Storage Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Turchi PEA, Drchal V, Kudrnovský J (2006) Stability and ordering properties of fcc alloys based on Rh, Ir, Pd, and Pt. Phys Rev B 74:064202-1–06420212CrossRefGoogle Scholar
  2. 2.
    Mena FP, DiTusa JF, van der Marel D, Aeppli G, Young DP, Damascelli A, Mydosh JA (2006) Suppressed reflectivity due to spin-controlled localization in a magnetic semiconductor. Phys Rev B 73:0852051–0852057CrossRefGoogle Scholar
  3. 3.
    Eagleton TS, Mallet J, Cheng X, Wang J, Chien C, Searson PC (2005) Electrodeposition of CoxPt1−x Thin Films. J Electrochem Soc 152:C27–C31CrossRefGoogle Scholar
  4. 4.
    Bowker M (2008) Automotive catalysis studied by surface science. Chem Soc Rev 37:2204–2211CrossRefGoogle Scholar
  5. 5.
    Inderwildi OR, Jenkins SJ, King DA (2008) Dynamic interplay between diffusion and reaction: nitrogen recombination on Rh{211} in car exhaust catalysis. J Am Chem Soc 130:2213–2220CrossRefGoogle Scholar
  6. 6.
    Guo J, Hsu A, Chu D, Chen R (2010) Improving oxygen reduction reaction activities on carbon-supported Ag nanoparticles in alkaline solutions. J Phys Chem C 114:4324–4330CrossRefGoogle Scholar
  7. 7.
    Cobley CM, Campbell DJ, Xia Y (2008) Tailoring the optical and catalytic properties of gold-silver nanoboxes and nanocages by introducing palladium. Adv Mater 20:748–752CrossRefGoogle Scholar
  8. 8.
    Holleck GL (1970) Diffusion and solubility of hydrogen in palladium and palladium-silver alloys. J Phys Chem 74:503–511CrossRefGoogle Scholar
  9. 9.
    Zarkevich NA, Tan TL, Johnson DD (2007) First-principles prediction of phase-segregating alloy phase diagrams and a rapid design estimate of their transition temperatures. Phys Rev B 75:104203-1–10420312CrossRefGoogle Scholar
  10. 10.
    Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (1996) Binary alloy phase diagrams. ASM InternationalGoogle Scholar
  11. 11.
    Gera VB, Gupta R, Jain KP (1989) Electronic structure of III-V ternary semiconductors. J Phys Condens Matter 1:4913–4930CrossRefGoogle Scholar
  12. 12.
    Papaconstantopoulos DA, Klein BM, Economou EN, Boyer LL (1978) Band structure and superconductivity of PdDx and PdHx. Phys Rev B 17:141–150CrossRefGoogle Scholar
  13. 13.
    Fazle Kibria AKM, Sakamoto Y (2000) The effect of alloying of palladium with silver and rhodium on the hydrogen solubility, miscibility gap and hysteresis. Int J Hydrogen Energy 25:53–859Google Scholar
  14. 14.
    Vuillemin JJ, Priestly MG (1965) De Haas-Van Alphen effect and fermi surface in palladium. Phys Rev Lett 14:307–309CrossRefGoogle Scholar
  15. 15.
    Wicke E (1984) Electronic structure and properties of hydrides of 3d and 4d metals and intermetallics. J Less-Common Met 101:17–33CrossRefGoogle Scholar
  16. 16.
    Zhou S, Jackson GS, Eichhorn B (2007) AuPt alloy nanoparticles for CO-tolerant hydrogen activation: architectural effects in Au–Pt bimetallic nanocatalysts. Adv Funct Mater 17:3099–3104CrossRefGoogle Scholar
  17. 17.
    Hernández-Fernández P, Rojas S, Ocón P, Gómez de la Fuente JL, San Fabián J, Sanza J, Peña MA, García-García FJ, Terreros P, Fierro JLG (2007) Influence of the preparation route of bimetallic Pt–Au nanoparticle electrocatalysts for the oxygen reduction reaction. J Phys Chem C 111:2913–2923CrossRefGoogle Scholar
  18. 18.
    Lang H, Maldonado S, Stevenson KJ, Chandler BD (2004) Synthesis and characterization of dendrimer templated supported bimetallic Pt–Au nanoparticles. J Am Chem Soc 126:12949–12956CrossRefGoogle Scholar
  19. 19.
    Chiang I, Chen Y, Chen D (2009) Synthesis of NiAu colloidal nanocrystals with kinetically tunable properties. J Alloys Compd 468:237–245CrossRefGoogle Scholar
  20. 20.
    Lu D, Domen K, Tanaka K (2002) Electrodeposited Au–Fe, Au–Ni, and Au–Co alloy nanoparticles from aqueous electrolytes. Langmuir 18:3226–3232CrossRefGoogle Scholar
  21. 21.
    Chiang I, Chen D (2007) Synthesis of monodisperse FeAu nanoparticles with tunable magnetic and optical properties. Adv Funct Mater 17:1311–1316CrossRefGoogle Scholar
  22. 22.
    Dahal N, Chikan V, Jasinski J, Leppert VJ (2008) Synthesis of water-soluble iron gold alloy nanoparticles. Chem Mater 20:6389–6395CrossRefGoogle Scholar
  23. 23.
    Torigoe K, Nakajima Y, Esumi K (1993) Preparation and characterization of colloidal silver-platinum alloys. J Phys Chem 97:8304–8309CrossRefGoogle Scholar
  24. 24.
    Kobayashi H, Yamauchi M, Ikeda R, Kitagawa H (2009) Atomic-level Pd–Au alloying and controllable hydrogen-absorption properties in size-controlled nanoparticles synthesized by hydrogen reduction. Chem Commun 32:4806–4808CrossRefGoogle Scholar
  25. 25.
    Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M (2008) Hydrogen absorption in the core/shell interface of Pd/Pt nanoparticles. J Am Chem Soc 130:1818–1819CrossRefGoogle Scholar
  26. 26.
    Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M (2008) On the nature of strong hydrogen atom trapping inside Pd nanoparticles. J Am Chem Soc 130:1828–1829CrossRefGoogle Scholar
  27. 27.
    Yamauchi M, Ikeda R, Kitagawa H, Takata M (2008) Nanosize effects on hydrogen storage in palladium. J Phys Chem C 112:3294–3299CrossRefGoogle Scholar
  28. 28.
    Yamauchi M, Kobayashi H, Kitagawa H (2009) Hydrogen storage mediated by Pd and Pt nanoparticles. Chem Phys Chem 10:2566–2576CrossRefGoogle Scholar
  29. 29.
    Kaushik VK (1991) XPS core level spectra and auger parameters for some silver compounds. J Electron Spectrosc Relat Phenom 56:273–277CrossRefGoogle Scholar
  30. 30.
    Liu XJ, Gao F, Wang CP, Ishida K (2008) Thermodynamic assessments of the Ag-Ni binary and Ag-Cu-Ni ternary systems. J Electron Mater 37:210–217CrossRefGoogle Scholar
  31. 31.
    Raevskaya MV, Yanson IE, Tatarkina AL, Sokolova IG (1987) The effect of nickel on interaction in the copper ruthenium system. J Less-Common Met 132:237–241CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Kyoto UniversityKyotoJapan

Personalised recommendations