General Introduction

  • Kohei Kusada
Part of the Springer Theses book series (Springer Theses)


Stable and reliably supplied energy is required to maintain our comfort in daily life. Energy sources can be divided three broad categories; (1) chemical or photo physical energy through oxidizing reactions or absorbing sunlight, (2) nuclear energy, and (3) thermo mechanical energy in the form of wind or water and so on.


Fermi Energy Hydrogen Storage Metal Hydride Alloy Nanoparticles Solid Solution Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337CrossRefGoogle Scholar
  2. 2.
    Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344CrossRefGoogle Scholar
  3. 3.
    Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352CrossRefGoogle Scholar
  4. 4.
    Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358CrossRefGoogle Scholar
  5. 5.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  6. 6.
    Larbalestier D, Gurevich A, Feldmann DM, Polyanskii A (2001) High-Tc superconducting materials for electric power applications. Nature 414:368–377CrossRefGoogle Scholar
  7. 7.
    Tamura H (1998) Hydrogen storage alloys—fundamentals and frontier technologies. NTS Inc., p 30Google Scholar
  8. 8.
    Ancsin J (1977) Thermometric fixed points of hydrogen. Metrologia 13:79–86CrossRefGoogle Scholar
  9. 9.
    Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon. Nature 386:377–379CrossRefGoogle Scholar
  10. 10.
    Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792CrossRefGoogle Scholar
  11. 11.
    Jiménez V, Ramírez-Lucas A, Sánchez P, Valverde JL, Romero A (2012) Improving hydrogen storage in modified carbon materials. Int J Hydrogen Energy 37:4144–4160CrossRefGoogle Scholar
  12. 12.
    Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129CrossRefGoogle Scholar
  13. 13.
    Farha OK, Yazaydin AӦ, Eryazici I, Malliakas CD, Hauser BG, Kanatzidis MG, Nguyen ST, Snurr RQ, Hupp JT (2010) De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem 2:944–948CrossRefGoogle Scholar
  14. 14.
    Ward MD (2003) Molecular Fuel Tanks. Science 300:1104–1105CrossRefGoogle Scholar
  15. 15.
    Alefeld G, Vӧlkl J (1978) Hydrogen in metals I. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  16. 16.
    Alefeld G, Vӧlkl J (1978) Hydrogen in metals II. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  17. 17.
    Papaconstantopoulos DA, Klein BM, Economou EN, Boyer LL (1978) Band structure and superconductivity of PdDX and PdHX. Phys Rev B 17:141–150CrossRefGoogle Scholar
  18. 18.
    Vuillemin JJ, Priestly MG (1965) De Haas-Van Alphen effect and fermi surface in palladium. Phys Rev Lett 14:307–308CrossRefGoogle Scholar
  19. 19.
    Mueller FM, Freeman AJ, Dimmock JO, Furdyna AM (1970) Electronic structure of palladium. Phys Rev B 1:4617–4634CrossRefGoogle Scholar
  20. 20.
    Wicke E (1984) Electronic structure and properties of hydrides of 3d and 4d metals and intermetallics. J Less-Common Met 101:17–33CrossRefGoogle Scholar
  21. 21.
    Besenbacher F, Chorkendorff I, Clausen BS, Hammer B, Molenbroek AM, Nørskov JK, Stensgaard I (1998) Design of a surface alloy catalyst for steam reforming. Science 279:1913–1915CrossRefGoogle Scholar
  22. 22.
    Huber GW, Shabaker JW, Dumesic JA (2003) Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons. Science 300:2075–2077CrossRefGoogle Scholar
  23. 23.
    Ertl G (2008) Reactions at surfaces: from atoms to complexity (Nobel lecture). Angew Chem Int Ed 47:3524–3535CrossRefGoogle Scholar
  24. 24.
    Xie X, Li Y, Liu Z, Haruta M, Shen W (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458:746–749CrossRefGoogle Scholar
  25. 25.
    Kaden WE, Wu T, Kunkel WA, Anderson SL (2009) Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 326:826–829CrossRefGoogle Scholar
  26. 26.
    Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7:333–338CrossRefGoogle Scholar
  27. 27.
    Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011) Single-atom catalysis of COoxidation using Pt1/FeOx. Nat Chem 3:634–641CrossRefGoogle Scholar
  28. 28.
    Roth C, Benker N, Buhrmester T, Mazurek M, Loster M, Fuess H, Koningsberger DC, Ramaker DE (2005) Determination of O[H] and CO coverage and adsorption sites on PtRu electrodes in an operating PEM fuel cell. J Am Chem Soc 127:14607–14615CrossRefGoogle Scholar
  29. 29.
    Jiang H, Liu B, Akita T, Haruta M, Sakurai H, Xu Q (2009) Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. J Am Chem Soc 131:11302–11303CrossRefGoogle Scholar
  30. 30.
    Kim HY, Lee HM, Henkelman G (2012) CO oxidation mechanism on CeO2-supported Au nanoparticles. J Am Chem Soc 134:1560–1570CrossRefGoogle Scholar
  31. 31.
    Pfeiler W (2007) Alloy physics. Wiley-VCH, New JerseyGoogle Scholar
  32. 32.
    Gibbs JW (1976) The equilibrium of heterogeneous substances. Trans Conn Acad 3:108–248Google Scholar
  33. 33.
    Gibbs JW (1978) The equilibrium of heterogeneous substances (concluded). Trans Conn Acad 3:343–524Google Scholar
  34. 34.
    Fazle Kibria AKM, Sakamoto Y (2000) The effect of alloying of palladium with silver and rhodium on the hydrogen solubility, miscibility gap and hysteresis. Int J Hydrogen Energy 25:853–859CrossRefGoogle Scholar
  35. 35.
    Zeng G, Goldbach A, Shi L, Xu H (2012) Compensation effect in H2 permeation kinetics of PdAg membranes. J Phys Chem C 116:18107CrossRefGoogle Scholar
  36. 36.
    Noh H, Luo W, Flanagan TB (1993) The effect of annealing pretreatment of Pd-Rh alloys on their hydrogen solubilities and thermodynamic parameters for H2 solution. J Alloys Compd 196:7–16CrossRefGoogle Scholar
  37. 37.
    Karakaya I, Thompson WT (1988) The Ag-Pd (silver-palladium) system. Bull Alloy Phase Diagrams 9:237–243CrossRefGoogle Scholar
  38. 38.
    Tripathi SN, Bharadwaj SR (1944) The Pd-Rh (palladium-rhodium) system. J Phase Equil 15:208–212CrossRefGoogle Scholar
  39. 39.
    Coulthard I, Sham TK (1996) Charge redistribution in Pd-Ag alloys from a local perspective. Phys Rev Lett 77:4824–4827CrossRefGoogle Scholar
  40. 40.
    Turchi PEA, Drchal V, Kudrnovský J (2006) Stability and ordering properties of fcc alloys based on Rh, Ir, Pd, and Pt. Phys Rev B 74:064202–064212CrossRefGoogle Scholar
  41. 41.
    Züchner H, Rauf T (1991) Electrochemical isotherm measurements on the Pd-H and PdAg-H systems. J Less-Common Met 172–174:816–823CrossRefGoogle Scholar
  42. 42.
    Aiken JD III, Finke RG (1999) A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. J Mol Catal A Chem 145:1–44CrossRefGoogle Scholar
  43. 43.
    Owens FJ, Poole CP Jr (2008) The physics and chemistry of nanosolids. Wiley Interscience, New JerseyGoogle Scholar
  44. 44.
    Kubo R (1962) Electronic properties of metallic fine particles I. J Phys Soc Jpn 17:975–986CrossRefGoogle Scholar
  45. 45.
    Zhang M, Efremov MY, Schiettekatte F, Olson EA, Kwan AT, Lai SL, Wisleder T, Greene JE, Allen LH (2000) Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements. Phys Rev B 62:10548–10564CrossRefGoogle Scholar
  46. 46.
    Blackman M, Sambles JR (1970) Melting of very small particles during evaporation at constant temperature. Nature 226:938CrossRefGoogle Scholar
  47. 47.
    Dong XL, Choi CJ, Kim BK (2002) Chemical synthesis of Co nanoparticles by chemical vapor condensation. Scr Mater 47:857–861CrossRefGoogle Scholar
  48. 48.
    Ling T, Xie L, Zhu J, Yu H, Ye H, Yu R, Cheng Z, Liu L, Yang G, Cheng Z, Wang Y, Ma X (2009) Icosahedral face-centered cubic Fe nanoparticles: facile synthesis and characterization with aberration-corrected TEM. Nano Lett 9:1572–1576CrossRefGoogle Scholar
  49. 49.
    Kim H, Kaufman MJ, Sigmund WM, Jacques D, Andrews R (2003) Observation and formation mechanism of stable face-centered-cubic Fe nanorods in carbon nanotubes. J Mater Res 18:1104–1108CrossRefGoogle Scholar
  50. 50.
    Ishida T, Haruta M (2007) Gold catalysts: towards sustainable chemistry. Angew Chem Int Ed 46:7154–7156CrossRefGoogle Scholar
  51. 51.
    Haruta M, Tsubota S, Kobayashi T, Kageyama H, Gent MJ, Delmon B (1993) Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J Catal 144:175–192CrossRefGoogle Scholar
  52. 52.
    Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115:301–309CrossRefGoogle Scholar
  53. 53.
    Xiong Y, Xia Y (2007) Shape-controlled synthesis of metal nanostructures: the case of palladium. Adv Mater 19:3385–3391CrossRefGoogle Scholar
  54. 54.
    Lim B, Jiang M, Tao J, Camargo PHC, Zhu Y, Xia Y (2009) Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv Funct Mater 19:189–200CrossRefGoogle Scholar
  55. 55.
    Lee I, Delbecq F, Morales R, Albiter MA, Zaera F (2009) Tuning selectivity in catalysis by controlling particle shape. Nat Mater 8:132–138CrossRefGoogle Scholar
  56. 56.
    Tao A, Sinsermsuksakul P, Yang P (2007) Tunable plasmenic lattices of silver nanocrystals. Nat Nanotechnol 2:435–440CrossRefGoogle Scholar
  57. 57.
    Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910CrossRefGoogle Scholar
  58. 58.
    Tedsree K, Li T, Jones S, Chan CWA, Yu KMK, Bagot PAJ, Marquis EA, Smith GDE, Tsang SCE (2011) Hydrogen production from formic acid decomposition at room temperature using a Ag–Pd core—shell nanocatalyst. Nat Nanotechnol 6:302–307CrossRefGoogle Scholar
  59. 59.
    Serpell CJ, Cookson J, Ozkaya D, Beer PD (2011) Core@ shell bimetallic nanoparticle synthesis via anion coordination. Nat Chem 3:478–483Google Scholar
  60. 60.
    Saruyama M, So Y, Kimoto K, Taguchi S, Kanemitsu Y, Teranishi T (2011) Spontaneous formation of Wurzite-CdS/Zinc blende-CdTe heterodimers through a partial anion exchange reaction. J Am Chem Soc 133:17598–17601CrossRefGoogle Scholar
  61. 61.
    Shun TT, Hung CH, Lee CF (2010) Formation of ordered/disordered nanoparticles in FCC high entropy alloys. J Alloys Compd 493:105–109CrossRefGoogle Scholar
  62. 62.
    Anh DTN, Singh P, Shankar C, Mott D, Maenosono S (2011) Charge-transfer-induced suppression of galvanic replacement and synthesis of (Au@Ag)@Au double shell nanoparticles for highly uniform, robust and sensitive bioprobes. Appl Phys Lett 99:073107CrossRefGoogle Scholar
  63. 63.
    Shibata T, Bunker BA, Zhang Z, Meisel D, Vardeman CF, Gezelter JD (2002) Size-dependent spontaneous alloying of Au-Ag nanoparticles. J Am Chem Soc 124:11989–11996CrossRefGoogle Scholar
  64. 64.
    Yasuda H, Mori H (1994) Cluster-size dependence of alloying behavior in gold clusters. Z Phys D 31:131–134CrossRefGoogle Scholar
  65. 65.
    Lee JG, Mori H (2004) Direct evidence for reversible diffusional phase change in nanometer-sized alloy particle. Phys Rev Lett 93:235501–235504CrossRefGoogle Scholar
  66. 66.
    Zhou S, Jackson GS, Eichhorn B (2007) AuPt alloy nanoparticles for CO-tolerant hydrogen activation: architectural effects in Au-Pt bimetallic nanocatalysts. Adv Funct Mater 17:3099–3104CrossRefGoogle Scholar
  67. 67.
    Hernández-Fernández P, Rojas S, Ocón P, Gómez de la Fuente JL, San Fabián J, Sanza J, Peña MA, García-García FJ, Terreros P, Fierro JLG (2007) Influence of the preparation route of bimetallic Pt–Au nanoparticle electrocatalysts for the oxygen reduction reaction. J Phys Chem C 111:2913–2923CrossRefGoogle Scholar
  68. 68.
    Lang H, Maldonado S, Stevenson KJ, Chandler BD (2004) Synthesis and characterization of dendrimer templated supported bimetallic Pt–Au nanoparticles. J Am Chem Soc 126:12949–12956CrossRefGoogle Scholar
  69. 69.
    Chiang I, Chen Y, Chen D (2009) Synthesis of NiAu colloidal nanocrystals with kinetically tunable properties. J Alloys Compd 468:237–245CrossRefGoogle Scholar
  70. 70.
    Lu D, Domen K, Tanaka K (2002) Electrodeposited Au–Fe, Au–Ni, and Au–Co alloy nanoparticles from aqueous electrolytes. Langmuir 18:3226–3232CrossRefGoogle Scholar
  71. 71.
    Chiang I, Chen D (2007) Synthesis of monodisperse FeAu nanoparticles with tunable magnetic and optical properties. Adv Funct Mater 17:1311–1316CrossRefGoogle Scholar
  72. 72.
    Torigoe K, Nakajima Y, Esumi K (1993) Preparation and characterization of colloidal silver-platinum alloys. J Phys Chem 97:8304–8309CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Kyoto UniversityKyotoJapan

Personalised recommendations