Skip to main content

Nascent Chain-Mediated Localization of mRNA on the Endoplasmic Reticulum as an Important Step of Unfolded Protein Response

  • Chapter
  • First Online:
Regulatory Nascent Polypeptides

Abstract

A system for homeostatic control of proteome, namely proteostasis, in a cell is conserved through a wide range of living organisms. The system is composed of a sensor for misfolded proteins that arise from perturbed proteostasis and signaling machinery that induces the expression of genes for molecular chaperones and proteolytic factors to counterbalance the proteostasis perturbation. In eukaryotes, distinct cellular response mechanisms have been elaborated for perturbed proteostasis within each organelle. In these cases, a sensor molecule recognizes misfolded proteins in the organelle and somehow transmits the signal to the nucleus across the organelle membrane. In the case of the endoplasmic reticulum (ER), proteostatic perturbation is sensed by an ER-resident transmembrane endoribonuclease inositol requiring 1 (IRE1) that catalyzes unconventional splicing of a precursor mRNA on the ER membrane. The resulting spliced form of the mRNA encodes a transcription factor that enters the nucleus and evokes a cellular response to counterbalance the perturbed proteostasis by activating transcription of target genes. In this chapter, we discuss the recently characterized mechanism, in which a nascent polypeptide encoded by the splicing-substrate mRNA directs localization of its own mRNA onto the ER membrane as an essential step for the efficient unconventional splicing of the substrate mRNA upon ER stresses. In particular, we focus on the mechanism that targets the unspliced precursor form of X-box binding protein 1 (XBP1u) mRNA to the ER membrane in metazoan cells. Importantly, translational pausing plays pivotal roles that ensure the nascent chain-mediated ER-targeting of XBP1u mRNA. We also discuss the prerequisites and generality of nascent chain-mediated mRNA localization in the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BiP:

Immunoglobulin heavy chain binding protein

CTR:

Carboxy-terminal region

ER:

Endoplasmic reticulum

ERAD:

ER associated degradation

HSP:

Heat shock protein

HSF:

Heat shock factor

HAC1:

Homologous to ATF/CREB 1

IRE1:

Inositol requiring 1

ORF:

Open reading frame

HR2:

Hydrophobic region 2

R-RNC:

mRNA–ribosome–nascent chain complex

SRP:

Signal recognition particle

SR:

SRP receptor

UPR:

Unfolded protein response

UPRE:

UPR element

UTR:

Untranslated region

XBP1:

X-box binding protein 1

XBP1u:

Unspliced form of XBP1

XBP1s:

Spliced form of XBP1

References

  • Aragon T, van Anken E, Pincus D, Serafimova IM, Korennykh AV, Rubio CA, Walter P (2009) Messenger RNA targeting to endoplasmic reticulum stress signalling sites. Nature (Lond) 457:736–740

    Article  CAS  Google Scholar 

  • Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319:916–919

    Article  CAS  PubMed  Google Scholar 

  • Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326–332

    CAS  PubMed  Google Scholar 

  • Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature (Lond) 415:92–96

    Article  CAS  Google Scholar 

  • Cheon SA, Jung KW, Chen YL, Heitman J, Bahn YS, Kang HA (2011) Unique evolution of the UPR pathway with a novel bZIP transcription factor, Hxl1, for controlling pathogenicity of Cryptococcus neoformans. PLoS Pathog 7:e1002177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiba S, Lamsa A, Pogliano K (2009) A ribosome-nascent chain sensor of membrane protein biogenesis in Bacillus subtilis. EMBO J 28:3461–3475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cox JS, Walter P (1996) A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell 87:391–404

    Article  CAS  PubMed  Google Scholar 

  • Cox JS, Shamu CE, Walter P (1993) Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73:1197–1206

    Article  CAS  PubMed  Google Scholar 

  • de Silva AM, Balch WE, Helenius A (1990) Quality control in the endoplasmic reticulum: folding and misfolding of vesicular stomatitis virus G protein in cells and in vitro. J Cell Biol 111:857–866

    Article  PubMed  Google Scholar 

  • Deng Y, Humbert S, Liu JX, Srivastava R, Rothstein SJ, Howell SH (2011) Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis. Proc Natl Acad Sci USA 108:7247–7252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Halic M, Beckmann R (2005) The signal recognition particle and its interactions during protein targeting. Curr Opin Struct Biol 15:116–125

    Article  CAS  PubMed  Google Scholar 

  • Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature (Lond) 397:271–274

    Article  CAS  Google Scholar 

  • Hayashi S, Wakasa Y, Takahashi H, Kawakatsu T, Takaiwa F (2012) Signal transduction by IRE1-mediated splicing of bZIP50 and other stress sensors in the endoplasmic reticulum stress response of rice. Plant J 69:946–956

    Article  CAS  PubMed  Google Scholar 

  • Haynes CM, Ron D (2010) The mitochondrial UPR-protecting organelle protein homeostasis. J Cell Sci 123:3849–3855

    Article  CAS  PubMed  Google Scholar 

  • Ingolia NT, Lareau LF, Weissman JS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147:789–802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ismail N, Hedman R, Schiller N, von Heijne G (2012) A biphasic pulling force acts on transmembrane helices during translocon-mediated membrane integration. Nat Struct Mol Biol 19:1018–1022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwata Y, Koizumi N (2012) Plant transducers of the endoplasmic reticulum unfolded protein response. Trends Plant Sci 17:720–727

    Article  CAS  PubMed  Google Scholar 

  • Iwawaki T, Hosoda A, Okuda T, Kamigori Y, Nomura-Furuwatari C, Kimata Y, Tsuru A, Kohno K (2001) Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nat Cell Biol 3:158–164

    CAS  PubMed  Google Scholar 

  • Keenan RJ, Freymann DM, Stroud RM, Walter P (2001) The signal recognition particle. Annu Rev Biochem 70:755–775

    Article  CAS  PubMed  Google Scholar 

  • Kloc M, Zearfoss NR, Etkin LD (2002) Mechanisms of subcellular mRNA localization. Cell 108:533–544

    Article  CAS  PubMed  Google Scholar 

  • Kohno K, Normington K, Sambrook J, Gething M-J, Mori K (1993) The promoter region of the yeast KAR2(BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Mol Cell Biol 13:877–890

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koizumi N, Martinez IM, Kimata Y, Kohno K, Sano H, Chrispeels MJ (2001) Molecular characterization of two Arabidopsis Ire1 homologs, endoplasmic reticulum-located transmembrane protein kinases. Plant Physiol 127:949–962

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kowarik M, Kung S, Martoglio B, Helenius A (2002) Protein folding during cotranslational translocation in the endoplasmic reticulum. Mol Cell 10:769–778

    Article  CAS  PubMed  Google Scholar 

  • Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature (Lond) 332:462–464

    Article  CAS  Google Scholar 

  • Lecuyer E, Yoshida H, Parthasarathy N, Alm C, Babak T, Cerovina T, Hughes TR, Tomancak P, Krause HM (2007) Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131:174–187

    Article  CAS  PubMed  Google Scholar 

  • Lee AH, Iwakoshi NN, Anderson KC, Glimcher LH (2003) Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci USA 100:9946–9951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee AH, Scapa EF, Cohen DE, Glimcher LH (2008) Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320:1492–1496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lerner RS, Seiser RM, Zheng T, Lager PJ, Reedy MC, Keene JD, Nicchitta CV (2003) Partitioning and translation of mRNAs encoding soluble proteins on membrane-bound ribosomes. RNA 9:1123–1137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu J, Deutsch C (2005) Folding zones inside the ribosomal exit tunnel. Nat Struct Mol Biol 12:1123–1129

    Article  CAS  PubMed  Google Scholar 

  • Lu SJ, Yang ZT, Sun L, Sun L, Song ZT, Liu JX (2012) Conservation of IRE1-regulated bZIP74 mRNA unconventional splicing in rice (Oryza sativa L.) involved in ER stress responses. Mol Plant 5:504–514

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Sant A, Kohno K, Normington K, Gething M-J, Sambrook J (1992) A 22 bp cis-acting element is necessary and sufficient for the induction for the yeast KAR2 (BiP) gene by unfolded proteins. EMBO J 11:2583–2593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mori K, Ma W, Gething MJ, Sambrook J (1993) A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell 74:743–756

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Kawahara T, Yoshida H, Yanagi H, Yura T (1996) Signalling from endoplasmic reticulum to nucleus: transcription factor with a basic-leucine zipper motif is required for the unfolded protein-response pathway. Genes Cells 1:803–817

    Article  CAS  PubMed  Google Scholar 

  • Morimoto RI (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259:1409–1410

    Article  CAS  PubMed  Google Scholar 

  • Muto H, Nakatogawa H, Ito K (2006) Genetically encoded but nonpolypeptide prolyl-tRNA functions in the A site for SecM-mediated ribosomal stall. Mol Cell 22:545–552

    Article  CAS  PubMed  Google Scholar 

  • Nagashima Y, Mishiba K, Suzuki E, Shimada Y, Iwata Y, Koizumi N (2011) Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor. Sci Rep 1:29

    Article  PubMed Central  PubMed  Google Scholar 

  • Nakatogawa H, Ito K (2001) Secretion monitor, SecM, undergoes self-translation arrest in the cytosol. Mol Cell 7:185–192

    Article  CAS  PubMed  Google Scholar 

  • Nakatogawa H, Ito K (2002) The ribosomal exit tunnel functions as a discriminating gate. Cell 108:629–636

    Article  CAS  PubMed  Google Scholar 

  • Neef DW, Jaeger AM, Thiele DJ (2011) Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat Rev Drug Discov 10:930–944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Normington K, Kohno K, Kozutsumi Y, Gething M-J, Sambrook J (1989) S. cerevisiae encodes an essential protein homologous in sequence and function to mammalian BiP. Cell 57:1223–1236

    Article  CAS  PubMed  Google Scholar 

  • Okamura K, Kimata Y, Higashio H, Tsuru A, Kohno K (2000) Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast. Biochem Biophys Res Commun 279:445–450

    Article  CAS  PubMed  Google Scholar 

  • Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  CAS  PubMed  Google Scholar 

  • Rose MD, Misra LM, Vogel JP (1989) KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell 57:1211–1221

    Article  CAS  PubMed  Google Scholar 

  • Ruegsegger U, Leber JH, Walter P (2001) Block of HAC1 mRNA translation by long-range base pairing is released by cytoplasmic splicing upon induction of the unfolded protein response. Cell 107:103–114

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Ellis RE, Lee K, Liu CY, Yang K, Solomon A, Yoshida H, Morimoto R, Kurnit DM, Mori K, Kaufman RJ (2001) Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107:893–903

    Article  CAS  PubMed  Google Scholar 

  • Sidrauski C, Walter P (1997) The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90:1031–1039

    Article  CAS  PubMed  Google Scholar 

  • Sidrauski C, Cox JS, Walter P (1996) tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell 87:405–413

    Article  CAS  PubMed  Google Scholar 

  • Sriburi R, Bommiasamy H, Buldak GL, Robbins GR, Frank M, Jackowski S, Brewer JW (2007) Coordinate regulation of phospholipid biosynthesis and secretory pathway gene expression in XBP-1(S)-induced endoplasmic reticulum biogenesis. J Biol Chem 282:7024–7034

    Article  CAS  PubMed  Google Scholar 

  • St. Johnston D (2005) Moving messages: the intracellular localization of mRNAs. Nat Rev Mol Cell Biol 6:363–375

    Article  CAS  PubMed  Google Scholar 

  • Stephens SB, Dodd RD, Brewer JW, Lager PJ, Keene JD, Nicchitta CV (2005) Stable ribosome binding to the endoplasmic reticulum enables compartment-specific regulation of mRNA translation. Mol Biol Cell 16:5819–5831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tirasophon W, Welihinda AA, Kaufman RJ (1998) A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev 12:1812–1824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tirosh B, Iwakoshi NN, Glimcher LH, Ploegh HL (2006) Rapid turnover of unspliced Xbp-1 as a factor that modulates the unfolded protein response. J Biol Chem 281:5852–5860

    Article  CAS  PubMed  Google Scholar 

  • Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258

    Article  CAS  PubMed  Google Scholar 

  • Uemura A, Oku M, Mori K, Yoshida H (2009) Unconventional splicing of XBP1 mRNA occurs in the cytoplasm during the mammalian unfolded protein response. J Cell Sci 122:2877–2886

    Article  CAS  PubMed  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Wang XZ, Harding HP, Zhang Y, Jolicoeur EM, Kuroda M, Ron D (1998) Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J 17:5708–5717

    Google Scholar 

  • Wu J, Rutkowski DT, Dubois M, Swathirajan J, Saunders T, Wang J, Song B, Yau GD, Kaufman RJ (2007) ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell 13:351–364

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Sato T, Matsui T, Sato M, Okada T, Yoshida H, Harada A, Mori K (2007) Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell 13:365–376

    Article  CAS  PubMed  Google Scholar 

  • Yanagitani K, Imagawa Y, Iwawaki T, Hosoda A, Saito M, Kimata Y, Kohno K (2009) Cotranslational targeting of XBP1 protein to the membrane promotes cytoplasmic splicing of its own mRNA. Mol Cell 34:191–200

    Article  CAS  PubMed  Google Scholar 

  • Yanagitani K, Kimata Y, Kadokura H, Kohno K (2011) Translational pausing ensures membrane targeting and cytoplasmic splicing of XBP1u mRNA. Science 331:586–589

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, Mori K (2003) A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 4:265–271

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Oku M, Suzuki M, Mori K (2006) pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response. J Cell Biol 172:565–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida H, Uemura A, Mori K (2009) pXBP1(U), a negative regulator of the unfolded protein response activator pXBP1(S), targets ATF6 but not ATF4 in proteasome-mediated degradation. Cell Struct Funct 34:1–10

    Article  CAS  PubMed  Google Scholar 

  • Young JC, Andrews DW (1996) The signal recognition particle receptor alpha subunit assembles co-translationally on the endoplasmic reticulum membrane during an mRNA-encoded translation pause in vitro. EMBO J 15:172–181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yura T, Nagai H, Mori H (1993) Regulation of the heat-shock response in bacteria. Annu Rev Microbiol 47:321–350

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Hiroshi Kadokura and Koreaki Ito for discussion and support in writing this paper. This work was supported by Grants-in-Aid for Research Activity Start-up (K.Y.), Scientific Research (B) and (S) (K.K.), and Scientific Research on Priority Areas (K.K.) of KAKENHI from The Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kohno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Yanagitani, K., Kohno, K. (2014). Nascent Chain-Mediated Localization of mRNA on the Endoplasmic Reticulum as an Important Step of Unfolded Protein Response. In: Ito, K. (eds) Regulatory Nascent Polypeptides. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55052-5_17

Download citation

Publish with us

Policies and ethics