Skip to main content

Co-translational Polyamine Sensing by Nascent ODC Antizyme

  • Chapter
  • First Online:
Regulatory Nascent Polypeptides

Abstract

Polyamines are essential biogenic poly-cations with important roles in many cellular processes, including translation and DNA replication. High levels of polyamines have been linked to cancer. Increased levels of polyamines, however, have also been shown to promote longevity. Cellular regulation of polyamines involves a variety of complex mechanisms that regulate uptake and excretion as well as synthesis and catabolism of polyamines. A key enzyme in the biosynthesis of polyamines is ornithine decarboxylase (ODC). The activity and stability of this homodimeric protein is controlled by ODC antizyme (OAZ). OAZ binds ODC monomers and thereby targets them for ubiquitin-independent degradation by the proteasome. OAZ is encoded by an interrupted open reading frame. As a consequence, synthesis of the functional protein is slowed and only occurs when a ribosomal frameshift (RFS) event takes place. High polyamine concentrations lead to an increased efficiency of translation of OAZ mRNA. Our studies have revealed that nascent OAZ polypeptide causes a translational arrest of ribosomes when polyamine concentration is low. At higher concentrations, binding of polyamines to nascent OAZ prevents stalling of the ribosomes on OAZ mRNA and thereby promotes synthesis of full-length ODC antizyme. Co-translational sensing of polyamines thereby contributes to a homeostatic regulation of polyamine biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcazar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta (Berl) 231:1237–1249

    CAS  Google Scholar 

  • Babbar N, Gerner EW (2011) Targeting polyamines and inflammation for cancer prevention. Recent Results Cancer Res 188:49–64

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bachrach U (2005) Naturally occurring polyamines: interaction with macromolecules. Curr Protein Pept Sci 6:559–566

    CAS  PubMed  Google Scholar 

  • Baranov PV, Gesteland RF, Atkins JF (2004) P-site tRNA is a crucial initiator of ribosomal frameshifting. RNA 10:221–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bernacki RJ, Oberman EJ, Seweryniak KE, Atwood A, Bergeron RJ, Porter CW (1995) Preclinical antitumor efficacy of the polyamine analogue N1, N11-diethylnorspermine administered by multiple injection or continuous infusion. Clin Cancer Res 1:847–857

    CAS  PubMed  Google Scholar 

  • Berndt U, Oellerer S, Zhang Y, Johnson AE, Rospert S (2009) A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. Proc Natl Acad Sci USA 106:1398–1403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bettuzzi S, Davalli P, Astancolle S, Carani C, Madeo B, Tampieri A, Corti A (2000) Tumor progression is accompanied by significant changes in the levels of expression of polyamine metabolism regulatory genes and clusterin (sulfated glycoprotein 2) in human prostate cancer specimens. Cancer Res 60:28–34

    CAS  PubMed  Google Scholar 

  • Brooks WH (2012) Autoimmune diseases and polyamines. Clin Rev Allergy Immunol 42:58–70

    CAS  PubMed  Google Scholar 

  • Burrell M, Hanfrey CC, Murray EJ, Stanley-Wall NR, Michael AJ (2010) Evolution and multiplicity of arginine decarboxylases in polyamine biosynthesis and essential role in Bacillus subtilis biofilm formation. J Biol Chem 2010(285):39224–39238

    Google Scholar 

  • Butcher NJ, Broadhurst GM, Minchin RF (2007) Polyamine-dependent regulation of spermidine-spermine N1-acetyltransferase mRNA translation. J Biol Chem 28:28530–28539

    Google Scholar 

  • Caraglia M, Park MH, Wolff EC, Marra M, Abbruzzese A (2013) eIF5A isoforms and cancer: two brothers for two functions? Amino Acids 44(1):103–109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casero RA, Pegg A (2009) Polyamine catabolism and disease. Biochem J 421:323–338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casero RA Jr, Frydman B, Stewart TM, Woster PM (2005) Significance of targeting polyamine metabolism as an antineoplastic strategy: unique targets for polyamine analogues. Proc West Pharmacol Soc 48:24–30

    CAS  PubMed  Google Scholar 

  • Chattopadhyay MK, Tabor CW, Tabor H (2003) Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proc Natl Acad Sci USA 100:2261–2265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chattopadhyay MK, Tabor CW, Tabor H (2006) Polyamine deficiency leads to accumulation of reactive oxygen species in a spe2Delta mutant of Saccharomyces cerevisiae. Yeast 23:751–761

    CAS  PubMed  Google Scholar 

  • Childs AC, Mehta DJ, Gerner EW (2003) Polyamine-dependent gene expression. Cell Mol Life Sci 60:1394–1406

    CAS  PubMed  Google Scholar 

  • Clarke OB, Caputo AT, Hill AP, Vandenberg JI, Smith BJ, Gulbis JM (2010) Domain reorientation and rotation of an intracellular assembly regulate conduction in Kir potassium channels. Cell 141:1018–1029

    CAS  PubMed  Google Scholar 

  • Coffino P (2001) Regulation of cellular polyamines by antizyme. Nat Rev Mol Cell Biol 2:188–194

    CAS  PubMed  Google Scholar 

  • Coleman CS, Pegg AE (1997) Proteasomal degradation of spermidine/spermine N1-acetyltransferase requires the carboxyl-terminal glutamic acid residues. J Biol Chem 272:12164–12169

    CAS  PubMed  Google Scholar 

  • Coleman CS, Pegg AE (2001) Polyamine analogues inhibit the ubiquitination of spermidine/spermine N1-acetyltransferase and prevent its targeting to the proteasome for degradation. Biochem J 358:137–145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fogel-Petrovic M, Vujcic S, Miller J, Porter CW (1996) Differential post-transcriptional control of ornithine decarboxylase and spermidine-spermine N1-acetyltransferase by polyamines. FEBS Lett 391:89–94

    CAS  PubMed  Google Scholar 

  • Fraser AV, Goodwin AC, Hacker-Prietz A, Sugar E, Woster PM, Casero RA Jr (2012) Knockdown of ornithine decarboxylase antizyme 1 causes loss of uptake regulation leading to increased N1, N11-bis(ethyl)norspermine (BENSpm) accumulation and toxicity in NCI H157 lung cancer cells. Amino Acids 42:529–538

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gabrielson E, Tully E, Hacker A, Pegg AE, Davidson NE, Casero RA Jr (2004) Induction of spermidine/spermine N1-acetyltransferase in breast cancer tissues treated with the polyamine analogue N1, N11-diethylnorspermine. Cancer Chemother Pharmacol 54:122–126

    CAS  PubMed  Google Scholar 

  • Gamble LD, Hogarty MD, Liu X, Ziegler DS, Marshall G, Norris MD, Haber M (2012) Polyamine pathway inhibition as a novel therapeutic approach to treating neuroblastoma. Front Oncol 2:162

    PubMed Central  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gödderz D, Schäfer E, Palanimurugan R, Dohmen RJ (2011) The N-terminal unstructured domain of yeast ODC functions as a transplantable and replaceable ubiquitin-independent degron. J Mol Biol 407:354–367

    PubMed  Google Scholar 

  • Heller JS, Canellakis ES (1981) Cellular control of ornithine decarboxylase activity by its antizyme. J Cell Physiol 107:209–217

    CAS  PubMed  Google Scholar 

  • Heller JS, Fong WF, Canellakis ES (1976) Induction of a protein inhibitor to ornithine decarboxylase by the end products of its reaction. Proc Natl Acad Sci USA 73:1858–1862

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heller JS, Kyriakidis D, Fong WF, Canellakis ES (1977) Ornithine decarboxylase antizyme is a normal component of uninduced H-35 cells and rat liver. Eur J Biochem 81:545–550

    CAS  PubMed  Google Scholar 

  • Herr HW, Warrel RP, Burchenal JH (1986) Phase I trial of alpha-difluoromethyl ornithine (DFMO) and methylglyoxal bis (guanylhydrazone) (MGBG) in patients with advanced prostatic cancer. Urology 28:508–511

    CAS  PubMed  Google Scholar 

  • Hobbs CA, Gilmour SK (2000) High levels of intracellular polyamines promote histone acetyltransferase activity resulting in chromatin hyperacetylation. J Cell Biochem 77:345–360

    CAS  PubMed  Google Scholar 

  • Hoffman DW, Carroll D, Martinez N, Hackert ML (2005) Solution structure of a conserved domain of antizyme: a protein regulator of polyamines. Biochemistry 44:11777–11785

    CAS  PubMed  Google Scholar 

  • Howard MT, Shirts BH, Zhou J, Carlson CL, Matsufuji S, Gesteland RF, Weeks RS, Atkins JF (2001) Cell culture analysis of the regulatory frameshift event required for the expression of mammalian antizymes. Genes Cells 6(11):931–941

    CAS  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2010a) Characteristics of cellular polyamine transport in prokaryotes and eukaryotes. Plant Physiol Biochem 48:506–512

    CAS  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2010b) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42:39–51

    CAS  PubMed  Google Scholar 

  • Ivanov IP, Atkins JF (2007) Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation. Nucleic Acids Res 35:1842–1858

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ivanov IP, Gesteland RF, Atkins JF (1998) A second mammalian antizyme: conservation of programmed ribosomal frameshifting. Genomics 52:119–129

    CAS  PubMed  Google Scholar 

  • Ivanov IP, Rohrwasser A, Terreros DA, Gesteland RF, Atkins JF (2000) Discovery of a spermatogenesis stage-specific ornithine decarboxylase antizyme: antizyme 3. Proc Natl Acad Sci USA 97:4808–4813

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ivanov IP, Gesteland RF, Atkins JF (2006) Evolutionary specialization of recoding: frameshifting in the expression of S. cerevisiae antizyme mRNA is via an atypical antizyme shift site but is still +1. RNA 12:332–337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janne J, Alhonen L, Pietila M, Keinanen TA (2004) Genetic approaches to the cellular functions of polyamines in mammals. Eur J Biochem 271:877–894

    CAS  PubMed  Google Scholar 

  • Jao DL, Chen KY (2006) Tandem affinity purification revealed the hypusine-dependent binding of eukaryotic initiation factor 5A to the translating 80S ribosomal complex. J Cell Biochem 97:583–598

    CAS  PubMed  Google Scholar 

  • Jeon JH, Choi KH, Cho SY, Kim CW, Shin DM, Kwon JC, Song KY, Park SC, Kim IG (2003) Transglutaminase 2 inhibits Rb binding of human papillomavirus E7 by incorporating polyamine. EMBO J 22:5273–5282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komar AA (2009) A pause for thought along the co-translational folding pathway. Trends Biochem Sci 34:16–24

    CAS  PubMed  Google Scholar 

  • Koomoa DL, Geerts D, Lange I, Koster J, Pegg AE, Feith DJ, Bachmann AS (2013) DFMO/eflornithine inhibits migration and invasion downstream of MYCN and involves p27Kip1 activity in neuroblastoma. Int J Oncol 42:1219–1228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kurian L, Palanimurugan R, Gödderz D, Dohmen RJ (2011) Polyamine sensing by nascent ornithine decarboxylase antizyme stimulates decoding of its mRNA. Nature (Lond) 477:490–494

    CAS  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta (Berl) 228:367–381

    CAS  Google Scholar 

  • Leroy D, Heriche JK, Filhol O, Chambaz EM, Cochet C (1997) Binding of polyamines to an autonomous domain of the regulatory subunit of protein kinase CK2 induces a conformational change in the holoenzyme. A proposed role for the kinase stimulation. J Biol Chem 272:20820–20827

    CAS  PubMed  Google Scholar 

  • Loftfield RB, Eigner EA, Pastuszyn A (1981) The role of spermine in preventing misacylation by phenylalanyl-tRNA synthetase. J Biol Chem 256:6729–6735

    CAS  PubMed  Google Scholar 

  • Lopez-Contreras AJ, Ramos-Molina B, Cremades A, Penafiel R (2008) Antizyme inhibitor 2 (AZIN2/ODCp) stimulates polyamine uptake in mammalian cells. J Biol Chem 283:20761–20769

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maeda Y, Rachez C, Hawel L 3rd, Byus CV, Freedman LP, Sladek FM (2002) Polyamines modulate the interaction between nuclear receptors and vitamin D receptor-interacting protein 205. Mol Endocrinol 16:1502–1510

    CAS  PubMed  Google Scholar 

  • Matsufuji S, Matsufuji T, Miyazaki Y, Murakami Y, Atkins JF, Gesteland RF, Hayashi S (1995) Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80:51–60

    CAS  PubMed  Google Scholar 

  • Matsui I, Wiegand L, Pegg A (1981) Properties of spermidine N-acetyltransferase from livers of rats treated with carbon tetrachloride and its role in the conversion of spermidine into putrescine. J Biol Chem 256:2454–2459

    CAS  PubMed  Google Scholar 

  • Minois N, Carmona-Gutierrez D, Madeo F (2011) Polyamines in aging and disease. Aging 3:716–732

    PubMed Central  PubMed  Google Scholar 

  • Mitchell JL, Judd GG, Bareyal-Leyser A, Ling SY (1994) Feedback repression of polyamine transport is mediated by antizyme in mammalian tissue-culture cells. Biochem J 299:19–22

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mony L, Zhu S, Carvalho S, Paoletti P (2011) Molecular basis of positive allosteric modulation of GluN2B NMDA receptors by polyamines. EMBO J 30:3134–3146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T, Tanaka K, Ichihara A (1992) Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature (Lond) 360:597–599

    CAS  Google Scholar 

  • Namy O, Galopier A, Martini C, Matsufuji S, Fabret C, Rousset JP (2008) Epigenetic control of polyamines by the prion [PSI(+)]. Nat Cell Biol 10:1069–1075

    CAS  PubMed  Google Scholar 

  • Nilsson JA, Keller UB, Baudino TA, Yang C, Norton S, Old JA, Nilsson LM, Neale G, Kramer DL, Porter CW, Cleveland JL (2005) Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation. Cancer Cell 7:433–444

    CAS  PubMed  Google Scholar 

  • Nowotarski SL, Woster PM, Casero RA Jr (2013) Polyamines and cancer: implications for chemotherapy and chemoprevention. Expert Rev Mol Med 15:e3

    PubMed Central  PubMed  Google Scholar 

  • O’Brien TG, Megosh LC, Gilliard G, Soler AP (1997) Ornithine decarboxylase overexpression is a sufficient condition for tumor promotion in mouse skin. Cancer Res 57:2630–2637

    PubMed  Google Scholar 

  • Palanimurugan R, Scheel H, Hofmann K, Dohmen RJ (2004) Polyamines regulate their synthesis by inducing expression and blocking degradation of ODC antizyme. EMBO J 23:4857–4867

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park MH, Nishimura K, Zanelli CF, Valentini SR (2010) Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 38:491–500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parry L, Balana Fouce R, Pegg AE (1995) Post-transcriptional regulation of the content of spermidine/spermine N1-acetyltransferase by N1N12-bis(ethyl)spermine. Biochem J 305:451–458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pegg AE (2008) Spermidine/spermine-N(1)-acetyltransferase: a key metabolic regulator. Am J Physiol Endocrinol Metab 294:E995–E1010

    CAS  PubMed  Google Scholar 

  • Pegg AE (2009) S-Adenosylmethionine decarboxylase. Essays Biochem 46:25–45

    CAS  PubMed  Google Scholar 

  • Pegg AE, Casero RA Jr (2011) Current status of the polyamine research field. Methods Mol Biol 720:3–35

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pegg AE, Feith DJ (2007) Polyamines and neoplastic growth. Biochem Soc Trans 35:295–299

    CAS  PubMed  Google Scholar 

  • Pegg AE, Feith DJ, Fong LY, Coleman CS, O’Brien TG, Shantz LM (2003) Transgenic mouse models for studies of the role of polyamines in normal, hypertrophic and neoplastic growth. Biochem Soc Trans 31:356–360

    CAS  PubMed  Google Scholar 

  • Perez-Leal O, Barrero CA, Clarkson AB, Casero RA, Merali S (2012) Polyamine-regulated translation of spermidine/spermine-N1-acetyltransferase. Mol Cell Biol 32:1453–1467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petros LM, Howard MT, Gesteland RF, Atkins JF (2005) Polyamine sensing during antizyme mRNA programmed frameshifting. Biochem Biophys Res Commun 338:1478–1489

    CAS  PubMed  Google Scholar 

  • Poulin R, Casero RA, Soulet D (2012) Recent advances in the molecular biology of metazoan polyamine transport. Amino Acids 42:711–723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rato C, Amirova SR, Bates DG, Stansfield I, Wallace HM (2011) Translational recoding as a feedback controller: systems approaches reveal polyamine-specific effects on the antizyme ribosomal frameshift. Nucleic Acids Res 39:4587–4597

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rial NS, Meyskens FL, Gerner EW (2009) Polyamines as mediators of APC-dependent intestinal carcinogenesis and cancer chemoprevention. Essays Biochem 46:111–124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saini P, Eyler DE, Green R, Dever TE (2009) Hypusine-containing protein eIF5A promotes translation elongation. Nature (Lond) 459:118–121

    CAS  Google Scholar 

  • Sakai TT, Cohen SS (1976) Effects of polyamines on the structure and reactivity of tRNA. Prog Nucleic Acid Res Mol Biol 17:15–42

    CAS  PubMed  Google Scholar 

  • Sasaki T, Matsuoka H, Saito M (2008) Generation of a multi-layer muscle fiber sheet from mouse ES cells by the spermine action at specific timing and concentration. Differentiation 76:1023–1030

    CAS  PubMed  Google Scholar 

  • Schipper RG, Romijn JC, Cuijpers VM, Verhofstad AA (2003) Polyamines and prostatic cancer. Biochem Soc Trans 31:375–380

    CAS  PubMed  Google Scholar 

  • Scuoppo C, Miething C, Lindqvist L, Reyes J, Ruse C, Appelmann I, Yoon S, Krasnitz A, Teruya-Feldstein J, Pappin D, Pelletier J, Lowe SW (2012) A tumour suppressor network relying on the polyamine-hypusine axis. Nature (Lond) 487:244–248

    CAS  Google Scholar 

  • Seiler N (1995) Polyamine oxidase, properties and functions. Prog Brain Res 106:333–344

    CAS  PubMed  Google Scholar 

  • Song Y, Kirkpatrick LL, Schilling AB, Helseth DL, Chabot N, Keillor JW, Johnson GV, Brady ST (2013) Transglutaminase and polyamination of tubulin: posttranslational modification for stabilizing axonal microtubules. Neuron 78:109–123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sunkara PS, Ramakrishna S, Nishioka K, Rao PN (1981) The relationship between levels and rates of synthesis of polyamines during mammalian cell cycle. Life Sci 28:1497–1506

    CAS  PubMed  Google Scholar 

  • Suppola S, Pietilä M, Parkkinen JJ, Korhonen V-P, Alhonen L, Halmekytö M, Porter C, Jänne J (1999) Overexpression of spermidine/spermine N1-acetyltransferase under the control of mouse metallothionein I promoter in transgenic mice: evidence for a striking post-transcriptional regulation of transgene expression by a polyamine analogue. Biochem J 338:311–316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki T, He Y, Kashiwagi K, Murakami Y, Hayashi S, Igarashi K (1994) Antizyme protects against abnormal accumulation and toxicity of polyamines in ornithine decarboxylase-overproducing cells. Proc Natl Acad Sci USA 91:8930–8934

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790

    CAS  PubMed  Google Scholar 

  • Thomas TJ, Thomas T (1994) Polyamine-induced Z-DNA conformation in plasmids containing (dA-dC)n. (dG-dT)n inserts and increased binding of lupus autoantibodies to the Z-DNA form of plasmids. Biochem J 298:485–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas T, Thomas TJ (2001) Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci 58:244–258

    CAS  PubMed  Google Scholar 

  • Thomas T, Faaland CA, Adhikarakunnathu S, Thomas TJ (1996) Structure–activity relations of S-adenosylmethionine decarboxylase inhibitors on the growth of MCF-7 breast cancer cells. Breast Cancer Res Treat 39:293–306

    CAS  PubMed  Google Scholar 

  • Tucholski J, Kuret J, Johnson GV (1999) Tau is modified by tissue transglutaminase in situ: possible functional and metabolic effects of polyamination. J Neurochem 73:1871–1880

    CAS  PubMed  Google Scholar 

  • Wallace HM, Fraser AV (2003) Polyamine analogues as anticancer drugs. Biochem Soc Trans 31:393–396

    CAS  PubMed  Google Scholar 

  • Wang Y, Devereux W, Stewart T, Casero R Jr (2001) Characterization of the interaction between the transcription factors human polyamine modulated factor (PMF-1) and NF-E2-related factor 2 (Nrf-2) in the transcriptional regulation of the spermidine/spermine N1-acetyltransferase (SSAT) gene. Biochem J 355:45–49

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Feith DJ, Welsh P, Coleman CS, Lopez C, Woster PM, O’Brien TG, Pegg AE (2007) Studies of the mechanism by which increased spermidine/spermine N1-acetyltransferase activity increases susceptibility to skin carcinogenesis. Carcinogenesis (Oxf) 28:2404–2411

    CAS  Google Scholar 

  • Wortham BW, Patel CN, Oliveira MA (2007) Polyamines in bacteria: pleiotropic effects yet specific mechanisms. Adv Exp Med Biol 603:106–115

    PubMed  Google Scholar 

  • Xie X, Gillies RJ, Gerner EW (1997) Characterization of a diamine exporter in Chinese hamster ovary cells and identification of specific polyamine substrates. J Biol Chem 272:20484–20489

    CAS  PubMed  Google Scholar 

  • Yanagitani K, Kimata Y, Kadokura H, Kohno K (2011) Translational pausing ensures membrane targeting and cytoplasmic splicing of XBP1u mRNA. Science 331:586–589

    CAS  PubMed  Google Scholar 

  • Zhang M, Pickart CM, Coffino P (2003) Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO J 22:1488–1496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang G, Hubalewska M, Ignatova Z (2009) Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat Struct Mol Biol 16:274–280

    CAS  PubMed  Google Scholar 

  • Zhang F, Saha S, Shabalina SA, Kashina A (2011) Differential arginylation of actin isoforms is regulated by coding sequence-dependent degradation. Science 329:1534–1537

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Deutsche Forschungsgemeinschaft (DO 649/4-3). V.H. is supported by a pre-doctoral fellowship from the NRW graduate school IGSDHD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jürgen Dohmen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Palanimurugan, R., Kurian, L., Hegde, V., Hofmann, K., Dohmen, R.J. (2014). Co-translational Polyamine Sensing by Nascent ODC Antizyme . In: Ito, K. (eds) Regulatory Nascent Polypeptides. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55052-5_12

Download citation

Publish with us

Policies and ethics