Skip to main content

Reconstruction and Tuning of Neural Circuits for Locomotion After Spinal Cord Injury

  • Chapter
  • First Online:
Clinical Systems Neuroscience

Abstract

Because patients with an injured spinal cord face severe functional deficits, novel therapeutic approaches are required to treat this traumatic disorder. Recent advances in molecular biology and electrophysiology have rendered approaches based on these two subjects important in this field. A molecular approach involving tissue engineering is beneficial for preserving or restoring the neural circuit, i.e., the so-called hardware of the spinal cord. On the other hand, the electrophysiological approach has advantages such as modulation and analysis of use-dependent plastic changes in neural functioning of human subjects, which corresponds to the “software” of the spinal cord. Because varied biological processes are triggered after spinal cord injury, we should use either approach, or both, depending on the clinical problem that needs to be solved.

This chapter is a revised and updated version of the previous edition [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogata T, Kawashima N, Nakazawa K, Akai M (2011) Molecular and electrophysiological approaches for functional recovery in patients with injured spinal cord. In: Kansaku K, Cohen LG (eds) Systems neuroscience and rehabilitation. Springer, Japan, pp 69–78

    Chapter  Google Scholar 

  2. Miura T, Tanaka S, Seichi A, Arai M, Goto T, Katagiri H et al (2000) Partial functional recovery of paraplegic rat by adenovirus-mediated gene delivery of constitutively active MEK1. Exp Neurol 166(1):115–126

    Article  CAS  PubMed  Google Scholar 

  3. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12(1):1–21

    Article  CAS  PubMed  Google Scholar 

  4. Duysens J, Pearson KG (1980) Inhibition of flexor burst generation by loading ankle extensor muscles in walking cats. Brain Res 187(2):321–332

    Article  CAS  PubMed  Google Scholar 

  5. Grillner S (1985) Neurobiological bases of rhythmic motor acts in vertebrates. Science 228(4696):143–149

    Article  CAS  PubMed  Google Scholar 

  6. Pearson KG (1995) Proprioceptive regulation of locomotion. Curr Opin Neurobiol 5(6):786–791

    Article  CAS  PubMed  Google Scholar 

  7. Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998) Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci 860:360–376

    Article  CAS  PubMed  Google Scholar 

  8. Dietz V, Harkema SJ (2004) Locomotor activity in spinal cord-injured persons. J Appl Physiol 96(5):1954–1960

    Article  CAS  PubMed  Google Scholar 

  9. Dietz V, Muller R, Colombo G (2002) Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 125(Pt 12):2626–2634

    Article  PubMed  Google Scholar 

  10. Kawashima N, Nozaki D, Abe MO, Akai M, Nakazawa K (2005) Alternate leg movement amplifies locomotor-like muscle activity in spinal cord injured persons. J Neurophysiol 93(2):777–785

    Article  PubMed  Google Scholar 

  11. Kawashima N, Nozaki D, Abe MO, Nakazawa K (2008) Shaping appropriate locomotive motor output through interlimb neural pathway within spinal cord in humans. J Neurophysiol 99(6):2946–2955

    Article  PubMed  Google Scholar 

  12. Colombo G, Wirz M, Dietz V (2001) Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord 39(5):252–255

    Article  CAS  PubMed  Google Scholar 

  13. Singhal B, Mohammed A, Samuel J, Mues J, Kluger P (2008) Neurological outcome in surgically treated patients with incomplete closed traumatic cervical spinal cord injury. Spinal Cord 46(9):603–607

    Article  CAS  PubMed  Google Scholar 

  14. Moritz S, Warnat J, Bele S, Graf BM, Woertgen C (2010) The prognostic value of NSE and S100B from serum and cerebrospinal fluid in patients with spontaneous subarachnoid hemorrhage. J Neurosurg Anesthesiol 22(1):21–31

    Article  PubMed  Google Scholar 

  15. Kwon BK, Stammers AM, Belanger LM, Bernardo A, Chan D, Bishop CM et al (2010) Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury. J Neurotrauma 27(4):669–682

    Article  PubMed  Google Scholar 

  16. Shaw G, Yang C, Ellis R, Anderson K, Parker Mickle J, Scheff S et al (2005) Hyperphosphorylated neurofilament NF-H is a serum biomarker of axonal injury. Biochem Biophys Res Commun 336(4):1268–1277

    Article  CAS  PubMed  Google Scholar 

  17. Hayakawa K, Okazaki R, Ishii K, Ueno T, Izawa N, Tanaka Y et al (2012) Phosphorylated neurofilament subunit NF-H as a biomarker for evaluating the severity of spinal cord injury patients, a pilot study. Spinal Cord 50(7):493–496

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Ogata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ogata, T., Kawashima, N., Nakazawa, K., Akai, M. (2015). Reconstruction and Tuning of Neural Circuits for Locomotion After Spinal Cord Injury. In: Kansaku, K., Cohen, L., Birbaumer, N. (eds) Clinical Systems Neuroscience. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55037-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55037-2_8

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55036-5

  • Online ISBN: 978-4-431-55037-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics