Skip to main content

How Many People Can Use a BCI System?

  • Chapter
  • First Online:
Clinical Systems Neuroscience

Abstract

Most brain–computer interface (BCI) systems utilize one of three approaches: sensorimotor rhythms (SMRs), P300s, or steady-state visually evoked potentials (SSVEPs). Numerous groups have reported that these approaches do not provide effective communication for a small percentage of users. This phenomenon has been called BCI illiteracy, inefficiency, or other terms. This chapter reviews this challenge across the three major BCI approaches. We review studies with a large number of users to assess how many people can use each type of BCI and discuss new efforts that could bring BCIs to broader user groups. Improved signal processing and feedback could benefit SMR BCI users, the face-speller may help P300 BCI users, and limited training could help SSVEP BCI users. Nonvisual BCIs could also enable people who are minimally conscious to answer “yes” or “no” questions. While there remain some people who cannot use a BCI, progress is being made to extend BCI technology to broader groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113:767–791

    Article  PubMed  Google Scholar 

  2. Wolpaw JR, Wolpaw EW (2012) Brain–computer interfaces: principles and practice. Oxford University Press, Oxford

    Book  Google Scholar 

  3. Millán JR, Mouriño J (2003) Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project. IEEE Trans Neural Syst Rehabil Eng 11(2):159–161

    Article  Google Scholar 

  4. Allison BZ, Pineda JA (2006) Effects of SOA and flash pattern manipulations on ERPs, performance, and preference: implications for a BCI system. Int J Psychophysiol 59:127–140

    Article  PubMed  Google Scholar 

  5. Kaufmann T, Schulz SM, Köblitz A, Renner G, Wessig C, Kübler A (2012) Face stimuli effectively prevent brain–computer interface inefficiency in patients with neurodegenerative disease. Clin Neurophysiol 124(5):893–900

    Article  PubMed  Google Scholar 

  6. Ortner R, Allison BZ, Korisek G, Gaqql H, Pfurtscheller G (2011) An SSVEP BCI to control a hand orthosis for persons with tetraplegia. IEEE Trans Neural Syst Rehabil Eng 19(1):1–5

    Article  PubMed  Google Scholar 

  7. Lotte F, Faller J, Guger C, Renard Y, Pfurtscheller G, Lecuyer A, Leeb R (2013) Combining BCI with virtual reality: towards new applications and improved BCI. In: Allison BZ, Dunne S, Leeb R, Millan J, Nijholt A (eds) Toward practical BCIs: bridging the gap from research to real-world applications. Springer, Berlin, pp 303–331

    Google Scholar 

  8. Allison BZ (2011) Trends in BCI research: progress today, backlash tomorrow? ACM Crossroads 18(1):18–22

    Article  Google Scholar 

  9. Guger C, Allison BZ, Großwindhager B, Prückl R, Hintermüller C, Kapeller C, Bruckner M, Krausz G, Edlinger G (2012) How many people could use an SSVEP BCI? Front Neurosci 6:169

    PubMed Central  PubMed  Google Scholar 

  10. Guger C, Krausz G, Allison BZ, Edlinger G (2012) A comparison of dry and gel-based electrodes for P300 BCIs. Front Neurosci 6:60

    PubMed Central  PubMed  Google Scholar 

  11. Guger C, Allison B, Hintermueller C, Prueckl R, Grosswindhager B, Kapeller C, Edlinger G (2012) Poor performance in SSVEP BCIs: are worse subjects just slower? Conf Proc IEEE Eng Med Biol Soc 2012:3833–3836

    PubMed  Google Scholar 

  12. Edlinger G, Guger C (2013) Can dry EEG sensors improve the usability of SMR, P300 and SSVEP based BCIs? In: Allison BZ, Dunne S, Leeb R, Millan J, Nijholt A (eds) Toward practical BCIs: bridging the gap from research to real-world applications. Springer, Berlin, pp 303–331

    Google Scholar 

  13. Kapeller C, Hintermüller C, Guger C (2012) Augmented control of an avatar using an SSVEP based BCI. In: Proceedings of the 3rd augmented human international conference. ACM, New York

    Google Scholar 

  14. Scherer R, Faller J, Balderas D, Friedrich EVC, Pröll M, Allison BZ, Müller-Putz G (2012) Brain–computer interfacing: more than the sum of its parts. J Soft Comput. doi: 10.1007/s00500-012-0895-4

    Google Scholar 

  15. Allison BZ (2010) Toward ubiquitous BCIs. In: Graimann B, Allison BZ, Pfurtscheller G (eds) Brain–computer interfaces: revolutionizing human–computer interaction. Springer, Berlin, pp 357–387

    Google Scholar 

  16. Chi YM, Wang Y-T, Wang Y, Maier C, Jung T-P, Cauwenberghs G (2012) Gaming control using a wearable and wireless EEG-based brain–computer interface device with novel dry foam-based sensors. IEEE Trans Neural Syst Rehabil Eng 20(2):228–235

    Article  PubMed  Google Scholar 

  17. Brunner C, Andreoni G, Bianchi L, Blankertz B, Breitweiser C, Kanoh S, Kothe C, Lecuyer A, Makeig S, Mellinger J, Perego P, Renard Y, Schalk G, Susila IP, Venthur B, Müller-Putz G (2013) BCI software platforms. In: Allison BZ, Dunne S, Leeb R, Millan J, Nijholt A (eds) Toward practical BCIs: bridging the gap from research to real-world applications. Springer, Berlin, pp 303–331

    Google Scholar 

  18. Guger C, Edlinger G (2012) The intendiX P300 face speller. Exhibition at ARS Electronica Festival, BrainLab Exhibit, Linz

    Google Scholar 

  19. Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H (1999) A spelling device for the paralysed. Nature 398(6725):297–298

    Article  CAS  PubMed  Google Scholar 

  20. Guger C, Edlinger G, Harkam W, Niedermayer I, Pfurtscheller G (2003) How many people are able to operate an EEG-based brain–computer interface (BCI)? IEEE Trans Neural Syst Rehabil Eng 11(2):145–147

    Article  CAS  PubMed  Google Scholar 

  21. Guger C, Allison BZ, Edlinger G (2013) Brain–computer interface research: a state-of-the-art summary. Springer, Berlin

    Book  Google Scholar 

  22. Jin J, Allison BZ, Brunner C, Wang B, Wang X, Zhang J, Neuper C, Pfurtscheller G (2010) P300 Chinese input system based on PSO-LDA. Biomed Eng 55(1):5–18

    Article  Google Scholar 

  23. Ikegami S, Takano K, Saeki N, Kansaku K (2011) Operation of a P300-based brain–computer interface by individuals with cervical spinal cord injury. Clin Neurophysiol 122(5):991–996

    Article  PubMed  Google Scholar 

  24. Fazel-Rezai R, Allison BZ, Sellers E, Guger C, Kleih S, Kübler A (2012) P300 brain computer interface: current challenges and future directions. Front Neuroeng 5:14

    Article  PubMed Central  PubMed  Google Scholar 

  25. Münßinger JI, Halder S, Kleih SC, Furdea A, Raco V, Hösle A, Kübler A (2010) Brain painting: first evaluation of a new brain–computer interface application with ALS-patients and healthy volunteers. Front Neurosci 4:18

    Article  Google Scholar 

  26. Bin G, Gao X, Yan Z, Hong B, Gao S (2009) An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method. J Neural Eng 6(4):046002

    Article  PubMed  Google Scholar 

  27. Allison BZ, Valbuena D, Lueth T, Teymourian A, Volosyak I, Gräser A (2010) BCI demographics: how many (and what kinds of) people can use an SSVEP BCI? IEEE Trans Neural Syst Rehabil Eng 18(2):107–116

    Article  PubMed  Google Scholar 

  28. Vidaurre C, Blankertz B (2010) Towards a cure for BCI illiteracy. Brain Topogr 23(2):194–198

    Article  PubMed Central  PubMed  Google Scholar 

  29. Ortner R, Irimia DC, Scharinger J, Guger C (2012) A motor imagery based brain–computer interface for stroke rehabilitation. Stud Health Technol Inform 181:319–23

    CAS  PubMed  Google Scholar 

  30. Naci L, Monti MM, Cruse D, Kübler A, Sorger B, Goebel R, Kotchoubey B, Owen AM (2012) Brain–computer interfaces for communication with nonresponsive patients. Ann Neurol 72(3):312–323

    Article  PubMed  Google Scholar 

  31. Ortner R, David R, Kollreider A, Pitsch H, Wojtowicz J, Edlinger G (2013) Human–computer confluence for rehabilitation purposes after stroke. In: Shumaker R (ed) Lecture notes in computer science: virtual, augmented and mixed reality. Systems and applications. Springer, Berlin, pp 72–82

    Google Scholar 

  32. Nijboer F, Allison BZ, Dunne S, Plass-Oude Bos D, Nijholt N, Haselager P (2011) A preliminary overview on the perception of marketability of brain–computer interfaces (BCI) and initial development of a repository of BCI companies. In: Proceedings of the 5th international brain–computer interface conference 2011, pp 344–347

    Google Scholar 

  33. Allison BZ, Dunne S, Leeb R, Millan J, Nijholt A (2013) Towards practical brain-computer interfaces: bridging the gap from research to real-world applications. Springer Verlag, Berlin Heidelberg.

    Book  Google Scholar 

  34. Kübler A, Müller K-R (2007) Toward brain–computer interfacing. In: Dornhege G, Millan JR, Hinterberger T, McFarland D, Müller KR (eds) An introduction to brain–computer interfacing. MIT, Boston, pp 1–25

    Google Scholar 

  35. Perelmouter J, Birbaumer N (2000) A binary spelling interface with random errors. IEEE Trans Rehabil Eng 8(2):227–232

    Article  CAS  PubMed  Google Scholar 

  36. Billinger M, Daly I, Kaiser V, Jin J, Allison BZ, Müller-Putz GR, Brunner C (2013) Is it significant? Guidelines for reporting BCI performance. In: Allison BZ, Dunne S, Leeb R, Millan J, Nijholt A (eds) Towards practical BCIs: bridging the gap from research to real-world applications. Springer, Berlin, pp 333–354

    Google Scholar 

  37. Yuan P, Gao X, Allison BZ, Wang Y, Bin G, Gao S (2013) A study on existing problems of information transfer rate estimation in online brain–computer interfaces. J Neural Eng 10:026014

    Article  PubMed  Google Scholar 

  38. Guger C, Daban S, Sellers E, Holzner C, Krausz G, Carabalona R, Gramatica F, Edlinger G (2009) How many people are able to control a P300-based brain–computer interface? Neurosci Lett 462(1):94–98

    Article  CAS  PubMed  Google Scholar 

  39. Allison BZ, Neuper C (2010) Could anyone use a BCI? In: Tan DS, Nijholt A (eds) Applying our minds to human-computer interaction. Brain-computer interfaces. Human-computer interaction series. Springer Verlag, London, pp 35–54.

    Google Scholar 

  40. Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller K-R (2008) Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag 25(1):41–56

    Article  Google Scholar 

  41. Müller-Gerking J, Pfurtscheller G, Flyvbjerg H (1999) Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin Neurophysiol 110(5):787–798

    Article  PubMed  Google Scholar 

  42. Ortner R, Scharinger J, Lechner A, Guger C (2015) How many people can control a motor imagery based BCI using common spatial patterns? Submitted to IEEE EMBC conference

    Google Scholar 

  43. Ramoser H, Müller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8(4):441–446

    Article  CAS  PubMed  Google Scholar 

  44. Ang KK, Guan C, Chua KS, Ang BT, Kuah CW, Wang C, Phua KS, Chin ZY, Zhang H (2011) A large clinical study on the ability of stroke patients to use an EEG-based motor imagery brain–computer interface. Clin EEG Neurosci 42(4):253–258

    Article  PubMed  Google Scholar 

  45. Ramos-Murguialday A, Schürholz M, Caggiano V, Wildgruber M, Caria A, Hammer EM, Halder S, Birbaumer N (2012) Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses. PLoS One 7(10):e47048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Gomez-Rodriguez M, Peters J, Hill J, Schölkopf B, Gharabaghi A, Grosse-Wentrup M (2011) Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery. J Neural Eng 8(3):036005

    Article  CAS  PubMed  Google Scholar 

  47. Sellers EW, Kübler A, Donchin E (2006) Brain–computer interface research at the University of South Florida Cognitive Psychophysiology Laboratory: the P300 speller. IEEE Trans Neural Syst Rehabil Eng 14(2):221–224

    Article  PubMed  Google Scholar 

  48. Mason SG, Bashashati A, Fatourechi M, Navarro KF, Birch GE (2007) A comprehensive survey of brain interface technology designs. Ann Biomed Eng 35:137–169

    Article  CAS  PubMed  Google Scholar 

  49. Kaufmann T, Schulz SM, Grünzinger C, Kübler A (2011) Flashing characters with famous faces improves ERP-based brain–computer interface performance. J Neural Eng 8:056016

    Article  CAS  PubMed  Google Scholar 

  50. Jin J, Allison BZ, Kaufmann T, Kübler A, Zhang Y, Wang X, Cichocki A (2012) The changing face of P300 BCIs: a comparison of stimulus changes in a P300 BCI involving faces, emotion, and movement. PLoS One 7(11):e49688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Bin G, Gao X, Wang Y, Li Y, Hong B, Gao S (2011) A high-speed BCI based on code modulation VEP. J Neural Eng 8(2):025015. doi:10.1088/1741-2560/8/2/025015

    Google Scholar 

  52. Guger C, Schlögl A, Neuper C, Walterspacher D, Strein T, Pfurtscheller G (2001) Rapid prototyping of an EEG-based brain–computer interface (BCI). IEEE Trans Neural Syst Rehabil Eng 9(1):49–58

    Article  CAS  PubMed  Google Scholar 

  53. Monti M (2012) Cognition in the vegetative state. Annu Rev Clin Psychol 8:431–454

    Article  PubMed  Google Scholar 

  54. Cruse D, Chennu S, Chatelle C, Bekinschtein TA, Fernández-Espejo D, Pickard JD, Laureys S, Owen AM (2011) Bedside detection of awareness in the vegetative state: a cohort study. The Lancet 378(9809):2088–2094

    Article  Google Scholar 

  55. Pfurtscheller G, Allison BZ, Brunner C, Bauernfeind G, Solis Escalante T, Scherer R, Zander TO, Müller-Putz G, Neuper C, Birbaumer N (2010) The hybrid BCI. Front Neurosci 4:42

    PubMed Central  Google Scholar 

  56. Leeb R, Sagha H, Chavarriaga R, Millán JR (2011) A hybrid brain–computer interface based on the fusion of electroencephalographic and electromyographic activities. J Neural Eng 2:025011

    Article  Google Scholar 

  57. Brunner P, Ritaccio AL, Lynch TM, Emrich JF, Wilson JA, Williams JC, Aarnoutse EJ, Ramsey NF, Leuthardt EC, Bischof H, Schalk G (2009) A practical procedure for real-time functional mapping of eloquent cortex using electrocorticographic signals in humans. Epilepsy Behav 15(3):278–286

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Edlinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Edlinger, G., Allison, B.Z., Guger, C. (2015). How Many People Can Use a BCI System?. In: Kansaku, K., Cohen, L., Birbaumer, N. (eds) Clinical Systems Neuroscience. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55037-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55037-2_3

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55036-5

  • Online ISBN: 978-4-431-55037-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics