Skip to main content

Body Representation and Neuroprosthetics

  • Chapter
  • First Online:
Book cover Clinical Systems Neuroscience

Abstract

Neuroprosthetics refer to prosthetic devices designed according to neuroscientific principles and interfacing directly with the nervous system. We propose a fundamental distinction between receptor prosthetics and somatic prosthetics. Receptor prosthetics involve substituting or augmenting the signals that the peripheral end-organ sends to the brain. In the ideal case, this substitution is perfectly transparent, so no novel learning or plastic change of neural processing is required. In contrast, somatic prosthetics will not just send new or substitute signals to the brain, but relies on plastic adjustments to the brain to use the novel signal in a functional way. The former does not involve any change in the representation of the body, but the latter may force the brain to change fundamental features of body representation. The continuum from receptor prosthetics to somatic prosthetics may provide a useful way of thinking about the hierarchy of the body representation extending from local receptor information processing (e.g. skin, muscle and joint) to the coherent representation of the body that apparently underlies the sense of ‘self’.

The first part of our chapter focuses on representation and the second on process. We first describe the different representations within the somatosensory system, and we discuss evidence for the existence of the integrated body representation. An important concept here will be to identify any aspects of body representation which cannot simply be explained by summation of local receptor information processing. Second, we will focus on the processes that can lead to the change in the body representation. These form the crucial element of somatic prosthetics. We argue for the existence of two different mechanisms that can modify the body representation at different timescales. Moreover, thinking about the different plastic processes that the CNS uses to respond to changing inputs may be a useful way to clarify how the body is represented in the brain.

In the final section we use these ideas to consider possible differences in the way that prosthetic control produces changes in body representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jackson A, Mavoori J, Fetz EE (2006) Long-term motor cortex plasticity induced by an electronic neural implant. Nature 444:56–60

    Article  CAS  PubMed  Google Scholar 

  2. Nishimura Y, Perlmutter SI, Fetz EE (2013) Restoration of upper limb movement via artificial corticospinal and musculospinal connections in a monkey with spinal cord injury. Front Neural Circuits 7:57

    Article  PubMed Central  PubMed  Google Scholar 

  3. Goodwin GM, McCloskey DI, Matthews PB (1972) Proprioceptive illusions induced by muscle vibration: contribution by muscle spindles to perception? Science 175:1382–1384

    Article  CAS  PubMed  Google Scholar 

  4. Haggard P, Newman C, Blundell J, Andrew H (2000) The perceived position of the hand in space. Percept Psychophys 62:363–377

    Article  CAS  PubMed  Google Scholar 

  5. Jola C, Davis A, Haggard P (2011) Proprioceptive integration and body representation: insights into dancers’ expertise. Exp Brain Res 213:257–265

    Article  PubMed  Google Scholar 

  6. van Beers RJ, Wolpert DM, Haggard P (2002) When feeling is more important than seeing in sensorimotor adaptation. Curr Biol 12:834–837

    Article  PubMed  Google Scholar 

  7. van Beers RJ, Wolpert DM, Haggard P (2001) Sensorimotor integration compensates for visual localization errors during smooth pursuit eye movements. J Neurophysiol 85:1914–1922

    PubMed  Google Scholar 

  8. Longo MR, Haggard P (2010) An implicit body representation underlying human position sense. Proc Natl Acad Sci U S A 107:11727–11732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Fuentes CT, Longo MR, Haggard P (2013) Body image distortions in healthy adults. Acta Psychol (Amst) 144:344–351

    Article  Google Scholar 

  10. Daurat-Hmeljiak C, Stambak M, Berges J (1978) Il test dello schema corporeo. Una prova di conoscenza e costruzione dell’immagine del corpo. Organizzazioni Speciali, Firenze

    Google Scholar 

  11. Fuentes CT, Runa C, Blanco XA, Orvalho V, Haggard P (2013) Does my face FIT?; A face image task reveals structure and distortions of facial feature representation. PLoS One 8: e76805. doi 10.1371/journal.pone.0076805

  12. Höffken O, Veit M, Knossalla F, Lissek S, Bliem B, Ragert P, Dinse HR, Tegenthoff M (2007) Sustained increase of somatosensory cortex excitability by tactile coactivation studied by paired median nerve stimulation in humans correlates with perceptual gain. J Physiol 584:463–471

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kilteni K, Normand JM, Sanchez-Vives MV, Slater M (2012) Extending body space in immersive virtual reality: a very long arm illusion. PLoS One 7:e40867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Longo MR, Long C, Haggard P (2012) Mapping the invisible hand: a body model of a phantom limb. Psychol Sci 23:740–742

    Article  PubMed Central  PubMed  Google Scholar 

  15. Blakemore SJ, Goodbody SJ, Wolpert DM (1998) Predicting the consequences of our own actions: the role of sensorimotor context estimation. J Neurosci 18:7511–7518

    CAS  PubMed  Google Scholar 

  16. Sirigu A, Daprati E, Pradat-Diehl P, Franck N, Jeannerod M (1999) Perception of self-generated movement following left parietal lesion. Brain 122:1867–1874

    Article  PubMed  Google Scholar 

  17. Smith MA, Ghazizadeh A, Shadmehr R (2006) Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol 4:e179

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kording KP, Tenenbaum JB, Shadmehr R (2007) The dynamics of memory as a consequence of optimal adaptation to a changing body. Nat Neurosci 10:779–786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kojima Y, Iwamoto Y, Yoshida K (2004) Memory of learning facilitates saccadic adaptation in the monkey. J Neurosci 24:7531–7539

    Article  CAS  PubMed  Google Scholar 

  20. Hagura N, Hirose S, Matsumura M, Naito E (2012) Am I seeing my hand? Visual appearance and knowledge of controllability both contribute to the visual capture of a person’s own body. Proc Biol Sci 279:3476–3481

    Article  PubMed Central  PubMed  Google Scholar 

  21. Blanke O (2012) Multisensory brain mechanisms of bodily self-consciousness. Nat Rev Neurosci 13:556–571

    CAS  PubMed  Google Scholar 

  22. Ernst MO, Bülthoff HH (2004) Merging the senses into a robust percept. Trends Cogn Sci 8:162–169

    Article  PubMed  Google Scholar 

  23. Kito T, Hashimoto T, Yoneda T, Katamoto S, Naito E (2006) Sensory processing during kinesthetic aftereffect following illusory hand movement elicited by tendon vibration. Brain Res 1114:75–84

    Article  CAS  PubMed  Google Scholar 

  24. Roll JP, Vedel JP (1982) Kinaesthetic role of muscle afferent in man, studied by tendon vibration and microneurography. Exp Brain Res 47:177–190

    Article  CAS  PubMed  Google Scholar 

  25. Gandevia SC (1985) Illusory movements produced by electrical stimulation of low-threshold muscle afferents from the hand. Brain 108:965–981

    Article  PubMed  Google Scholar 

  26. Burke D, Hagbarth K, Lofstedt L, Wallin G (1976) The responses of human muscle spindle endings to vibration of non-contracting muscles. J Physiol (Lond) 261:673–693

    Article  CAS  Google Scholar 

  27. Lackner JR (1988) Some proprioceptive influences on the perceptual representation of body shape and orientation. Brain 111:281–297

    Article  PubMed  Google Scholar 

  28. de Vignemont F, Ehrsson HH, Haggard P (2005) Bodily illusions modulate tactile perception. Curr Biol 15:1286–1290

    Article  PubMed  Google Scholar 

  29. Ehrsson HH, Kito T, Sadato N, Passingham RE, Naito E (2005) Neural substrate of body size: illusory feeling of shrinking of the waist. PLoS Biol 3:e412

    Article  PubMed Central  PubMed  Google Scholar 

  30. Longo MR, Kammers MP, Gomi H, Tsakiris M, Haggard P (2009) Contraction of body representation induced by proprioceptive conflict. Curr Biol 19:R727–R728

    Article  CAS  PubMed  Google Scholar 

  31. Ramachandran VS, Rogers-Ramachandran D, Cobb S (1995) Touching the phantom limb. Nature 377:489–490

    Article  CAS  PubMed  Google Scholar 

  32. Mancini F, Longo MR, Kammers MP, Haggard P (2011) Visual distortion of body size modulates pain perception. Psychol Sci 22:325–330

    Article  PubMed  Google Scholar 

  33. Moseley GL, Parsons TJ, Spence C (2008) Visual distortion of a limb modulates the pain and swelling evoked by movement. Curr Biol 18:R1047–R1048

    Article  CAS  PubMed  Google Scholar 

  34. Tajadura-Jiménez A, Väljamäe A, Toshima I, Kimura T, Tsakiris M, Kitagawa N (2012) Action sounds recalibrate perceived tactile distance. Curr Biol 22:R516–R517

    Article  PubMed  Google Scholar 

  35. Gandevia S, Phegan C (1999) Perceptual distortions of the human body image produced by local anaesthesia, pain and cutaneous stimulation. J Physiol 514:609–616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Ramachandran VS, Hirstein W (1998) The perception of phantom limbs. Brain 121:1603–1630

    Article  PubMed  Google Scholar 

  37. Hagura N, Takei T, Hirose S, Aramaki Y, Matsumura M, Sadato N, Naito E (2007) Activity in the posterior parietal cortex mediates visual dominance over kinesthesia. J Neurosci 27:7047–7053

    Article  CAS  PubMed  Google Scholar 

  38. Tsakiris M, Carpenter L, James D, Fotopoulou A (2010) Hands only illusion: multisensory integration elicits sense of ownership for body parts but not for non-corporeal objects. Exp Brain Res 204:343–352

    Article  PubMed  Google Scholar 

  39. Botvinick M, Cohen J (1998) Rubber hands ‘feel’ touch that eyes see. Nature 391:756

    Article  CAS  PubMed  Google Scholar 

  40. Kinsbourne M, Warrington EK (1962) A study of finger agnosia. Brain 85:47–66

    Article  CAS  PubMed  Google Scholar 

  41. Schwoebel J, Coslett HB (2005) Evidence for multiple, distinct representations of the human body. J Cogn Neurosci 17:543–553

    Article  PubMed  Google Scholar 

  42. Parise CV, Spence C, Ernst MO (2012) When correlation implies causation in multisensory integration. Curr Biol 22:46–49

    Article  CAS  PubMed  Google Scholar 

  43. Head H, Holmes G (1911) Sensory disturbances from cerebral lesions. Brain 34:102–254

    Article  Google Scholar 

  44. de Vignemont F (2010) Body schema and body image–pros and cons. Neuropsychologia 48:669–680

    Article  PubMed  Google Scholar 

  45. Longo MR, Azañón E, Haggard P (2010) More than skin deep: body representation beyond primary somatosensory cortex. Neuropsychologia 48:655–668

    Article  PubMed  Google Scholar 

  46. Vargas CD, Aballéa A, Rodrigues EC, Reilly KT, Mercier C, Petruzzo P, Dubernard JM, Sirigu A (2009) Re-emergence of hand-muscle representations in human motor cortex after hand allograft. Proc Natl Acad Sci U S A 106:7197–7202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Fetz EE (2007) Volitional control of neural activity: implications for brain–computer interfaces. J Physiol 579:571–579. doi:10.1113/jphysiol.2006.127142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M et al (2000) Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 208:361–365

    Google Scholar 

  49. Chapin JK, Markowitz R, Moxon KA, Nicolelis MAL (1999) Direct real-time control of a robot arm using signals derived from neuronal population recordings in motor cortex. Nat Neurosci 2:664–670

    Article  CAS  PubMed  Google Scholar 

  50. Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP (2002) Instant neural control of a movement signal. Nature 416:141–142

    Article  CAS  PubMed  Google Scholar 

  51. Taylor DM, Tillery SI, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296:1829–1832

    Article  CAS  PubMed  Google Scholar 

  52. Carmena JM, Lebedev MA, Crist R, O’Doherty JE, Santucci D et al (2003) Learning to control brain-machine interface for reaching and grasping by primates. PLoS Biol 1:e42

    Article  PubMed Central  PubMed  Google Scholar 

  53. Musallam S, Corneil BD, Greger B, Scherberger H, Andersen RA (2004) Cognitive control signals for neural prosthetics. Science 305:258–262. doi:10.1126/science.1097938

    Article  CAS  PubMed  Google Scholar 

  54. Wolpaw JR, McFarland DJ (2004) Control of a two-dimensional movement signal by a noninvasive brain–computer interface in humans. Proc Natl Acad Sci U S A 101:17849–17854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Ganguly K, Carmena JM (2009) Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol 7:e1000153

    Article  PubMed Central  PubMed  Google Scholar 

  56. Ganguly K, Dimitrov DF, Wallis JD, Carmena JM (2011) Reversible large-scale modification of cortical networks during neuroprosthetic control. Nat Neurosci 14:662–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Fetz EE (1969) Operant conditioning of cortical unit activity. Science 163:955–958

    Article  CAS  PubMed  Google Scholar 

  58. Maravita A, Iriki A (2004) Tools for the body (schema). Trends Cogn Sci 8:79–86

    Article  PubMed  Google Scholar 

  59. Cardinali L, Frassinetti F, Brozzoli C, Urquizar C, Roy AC, Farnè A (2009) Tool-use induces morphological updating of the body schema. Curr Biol 19(13):1157

    Article  CAS  Google Scholar 

  60. Sposito A, Bolognini N, Vallar G, Maravita A (2012) Extension of perceived arm length following tool-use: clues to plasticity of body metrics. Neurophysiologica 50:2187–2194

    Google Scholar 

  61. Cardinali L, Frassinetti F, Brozzoli C, Urquizar C, Roy AC, Farnè A (2011) When action is not enough: tool-use reveals tactile-dependent access to body Schema. Neurophysiologica 49:3750–3757

    CAS  Google Scholar 

  62. Iriki A, Tanaka M, Iwamura Y (1996) Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport 7:2325–2330

    Article  CAS  PubMed  Google Scholar 

  63. Canzoneri E, Marzolla M, Amoresano A, Verni G, Serino A (2013) Amputation and prosthesis implantation shape body and peripersonal space representations. Sci Rep 3:2844

    Article  PubMed Central  PubMed  Google Scholar 

  64. Shokur S, O’Doherty JE, Winans JA, Bleuler H, Lebedev MA, Nicolelis MA (2013) Expanding the primate body schema in sensorimotor cortex by virtual touches of an avatar. Proc Natl Acad Sci U S A 110:15121–15126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Tabot GA, Dammann JF, Berg JA, Tenore FV, Boback JL, Vogelstein RJ, Bensmaia SJ (2013) Restoring the sense of touch with a prosthetic hand through a brain interface. Proc Natl Acad Sci U S A 110:18279–18284. doi:10.1073/pnas.1221113110

  66. Radhakrishnan SM, Baker SN, Jackson A (2008) Learning a novel myoelectric-controlled interface task. J Neurophysiol 100:2397–2408

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Patrick Haggard was supported by EU FP7 Project VERE (WP1), by an ESRC Professorial Fellowship and by ERC Advanced Grant HUMVOL. Nobuhiro Hagura is supported by Marie Curie International Incoming Fellowships and by the Japanese Society for the Promotion of Sciences (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiro Hagura Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Hagura, N., Haggard, P. (2015). Body Representation and Neuroprosthetics. In: Kansaku, K., Cohen, L., Birbaumer, N. (eds) Clinical Systems Neuroscience. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55037-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55037-2_10

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55036-5

  • Online ISBN: 978-4-431-55037-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics