Skip to main content

MDSC: Myeloid-Derived Suppressor Cells

  • Chapter
  • First Online:
Immunotherapy of Cancer

Abstract

Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature myeloid cells whose numbers are increased in states of cancer, inflammation, or infection. MDSC are reported to be induced by tumor-produced growth factors in cancer-bearing hosts. Mechanisms of immune suppression by MDSC include production of arginase-1, reactive oxygen species, and nitric oxide and secretion of immunosuppressive cytokines including IL-10. MDSC have been reported to be one of the strongest barriers to cancer immunotherapy because of their extensive suppression of immune functions. Inhibition of MDSC is thus essential for improving anticancer immunotherapy. Several compounds and agents that were reported to inhibit MDSC in mice are now being proven effective for inhibition of MDSC in patients with cancer. In this chapter, mechanisms of MDSC production and MDSC suppression of immune responses are described, and strategies to inhibit MDSC are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dougan M, Granoff G (2009) Immune therapy for cancer. Annu Rev Immunol 27:83–117

    Article  PubMed  CAS  Google Scholar 

  2. Kantoff PW, Higano CD, Shore ND, Berger ER, Small EJ, Penson DF et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422

    Article  PubMed  CAS  Google Scholar 

  3. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  4. Vesely MD, Kenshaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271

    Article  PubMed  CAS  Google Scholar 

  5. Kamo I, Friedman H (1977) Immunosuppression and the role of suppressive factors in cancer. Adv Cancer Res 25:271–321

    Article  PubMed  CAS  Google Scholar 

  6. Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S, Schreiber H (2007) The terminology issue for myeloid-derived suppressor cells. Cancer Res 67:425–426

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Bronte V, Appoloni A, Cabrelle A, Ronca R, Serafini P, Zamboni P, Restifo NP, Zanovello P (2000) Identification of a CD11b(+)/Gr-1(+)/CD31(+)myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood 96:3838–3846

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Schmielau J, Finn OJ (2011) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res 61:4756–4760

    Google Scholar 

  9. Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI (2004) Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172:989–999

    Article  PubMed  CAS  Google Scholar 

  10. Lindau I, Gielen P, Kroesen M, Wesseling P, Adena GJ (2012) The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138:105–115

    Article  CAS  Google Scholar 

  11. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Sawanobori Y, Ueha S, Kurachi M, Shimaoka T, Talmadge JE, Abe J et al (2008) Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood 118:5457–5466

    Article  CAS  Google Scholar 

  13. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH (2006) Gr-1′CD115′ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory and T-cell anergy in tumor-bearing host. Cancer Res 66:1123–1131

    Article  PubMed  CAS  Google Scholar 

  14. Youn JI, Nagarj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181:5791–5802

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Ochoa AC, Zea AH, Hernandez C, Rodriguez PC (2007) Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res 13:721s–726s

    Article  PubMed  CAS  Google Scholar 

  16. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC et al (2001) Increased production of immature myeloid cells in cancer patients. A mechanism of immunosuppression in cancer. J Immunol 166:678–689

    Article  PubMed  CAS  Google Scholar 

  17. Nagaraj S, Gabrilovich DI (2008) Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res 68:2561–2563

    Article  PubMed  CAS  Google Scholar 

  18. Laborde RR, Lin Y, Gustafson MP, Bulur PA, Diets AB (2014) Cancer vaccines in the world of immune suppressive monocytes (CD14+HLA-DRlo/neg Cells): the gateway to improved responses. Front Immunol 5:1–5

    Article  CAS  Google Scholar 

  19. Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borello I (2004) High-dose GM-CSF producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res 64:6337–6343

    Article  PubMed  CAS  Google Scholar 

  20. Rodriguez PC, Zea AH, Culotta KS, Zabaleta J, Ochoa JB, Ochoa AC (2002) Regulation of T cell receptor CD3zeta chain expression by L-arginine. J Biol Chem 2777:21123–21129

    Article  CAS  Google Scholar 

  21. Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5:641–654

    Article  PubMed  CAS  Google Scholar 

  22. Rodriguez PC, Ochoa AC (2008) Arginine regulation by myeloid-derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol Rev 222:180–191

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Dolcetti L, Peranzoni E, Ugel S, Marigo I, Fernandez-Gomez A, Mesa C et al (2010) Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 40:22–35

    Article  PubMed  CAS  Google Scholar 

  24. Mao Y, Poschke I, Kiessling R (2014) Tumor-induced immune-suppression: role of inflammatory mediators released by myelomonocytic cells. J Int Med 276:154–179

    Article  CAS  Google Scholar 

  25. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Wesolowski R, Markowitz J, Carson WE III (2013) Myeloid derived suppressor cells-a new therapeutic target in the treatment of cancer. J Immunother Cancer 1:10

    Article  PubMed Central  PubMed  Google Scholar 

  27. Miescher S, Stoeck M, Qiao L, Barras C, Barrelet L, von Fliedner V (1988) Preferential clonogenic deficit of CD8-positive T-lymphocytes infiltrating human solid tumors. Cancer Res 48:2094–2103

    Google Scholar 

  28. Miescher S, Whiteside TL, Carrel S, von Fliedner V (1986) Functional properties of tumor-infiltrating and blood lymphocytes in patients with solid tumors: effects of tumor cells and their supernatants on proliferative responses of lymphocytes. J Immunol 136:1899–1907

    PubMed  CAS  Google Scholar 

  29. Whiteside TL, Miescher S, Moretta L, von Fliedner V (1988) Cloning and proliferating precursor frequencies of tumor-infiltrating lymphocytes from human solid tumors. Transplant Proc 20:342–343

    PubMed  CAS  Google Scholar 

  30. Whiteside TL, Rabinowich H (1988) The role of Fas/FasL in immunosuppression induced by human tumors. Cancer Immunol Immunother 46:175–184

    Article  Google Scholar 

  31. Yang R, Cai Z, Zhang Y, Yutzy WH 4th, Roby KF, Roden RB (2006) CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1′CD11b’ myeloid cells. Cancer Res 66:6807–6815

    Article  PubMed  CAS  Google Scholar 

  32. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J et al (2006) Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor bearing host. Cancer Res 66:1125–1131

    Google Scholar 

  33. Ohki S, Shibata M, Gonda K, Machida T, Shimura T, Nakamura I et al (2012) Circulating myeloid-derived suppressor cells are increased and correlate to immune suppression, inflammation and hypoalbuminemia in patients with cancer. Oncol Rep 28:453–458

    PubMed  Google Scholar 

  34. Gonda K, Shibata M, Shimura T, Machida T, Suzuki S, Nakamura I et al (2012) Serum soluble interleukin-2 receptor is increased in malnourished and immunosuppressed patients with gastric and colorectal cancer: possible influence of myeloid-derived suppressor cells. World J Oncol 3:158–164

    Google Scholar 

  35. Yazawa T, Shibata M, Gonda K, Machida T, Suzuki S, Kenjo A et al (2013) Increased IL-17 production correlates with immunosuppression involving myeloid-derived suppressor cells and nutritional impairment in patients with various gastrointestinal cancers. Mol Clin Oncol 1:675–679

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Suzuki S, Shibata M, Gonda K, Kanke Y, Ashizawa M, Ujiie D et al (2013) Immunosuppression involving increased myeloid-derived suppressor cells, systemic inflammation and hypoalbuminemia are present in patients with anaplastic thyroid cancer. Mol Clin Oncol 1:959–964

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Watanabe T, Shibata M, Nishiyama H, Soeda S, Furukawa S, Gonda K, Takenoshita S, Fujimori K (2013) Elevated serum levels of vascular endothelial growth factor is effective as a marker for malnutrition and inflammation in patients with ovarian cancer. Biomed Rep 1:197–201

    PubMed Central  PubMed  CAS  Google Scholar 

  38. Zhu B, Bando Y, Xiao S, Yang K, Anderson AC, Kuchroo VK, Khoury SJ (2007) CD11b+ Ly-6CDM suppressive monocytes in experimental autoimmune encephalomyelitis. J Immunol 179:5228–5237

    Article  PubMed  CAS  Google Scholar 

  39. Kerr EC, Raveney BJ, Copland DA, Dick AD, Nicholson LB (2008) Analysis of retinal cellular infiltrate in experimental autoimmune uveoretinitis reveals multiple regulatory cell populations. J Autoimmun 31:354–361

    Article  PubMed  CAS  Google Scholar 

  40. Marhaba R, Vitacolonna M, Hildebrand D, Baniyask M, Freyschmidt-Paul P, Zoller M (2007) The importance of myeloid-derived suppressor cells in the regulation of autoimmune effector cells by a chronic contact eczema. J Immunol 179:5071–5081

    Article  PubMed  CAS  Google Scholar 

  41. Haile LA, von Wasielewski R, Gamrekelashvili J, Kruger C, Bachman O, Westendorf AM et al (2008) Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology 135:871–881

    Article  PubMed  CAS  Google Scholar 

  42. Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK (2012) Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 22:275–281

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Kao J, Ko EC, Sikora AT, Fu S, S-h C (2011) Targeting immune suppressing myeloid-derived suppressor cells in oncology. Crit Rev Oncol Hematol 77:12–19

    Article  PubMed Central  PubMed  Google Scholar 

  44. Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W et al (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 203:2691–2702

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Nagaraj S, Schrum AG, Cho HI, Celis E, Gabrilovich DI (2010) Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J Immunol 184:3106–3116

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Molon B, Ugel S, Del Pozo F, Sondani C, Zilio S, Avella D et al (2011) Chemokine nitration prevent intratumoral infiltration of antigen-specific T cells. J Exp Med 208:1949–1962

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Fiorucci S, Santucci S, Cirino G, Mencarelli A, Familiari L, Soldano PD, Morelli A (2000) IL-1 beta converting enzyme is a target for nitric oxide-releasing aspirin: new insight in the anti-inflammatory mechanism of nitric oxide-releasing nonsteroidal anti-inflammatory drugs. J Immunol 165:5245–5254

    Article  PubMed  CAS  Google Scholar 

  48. Veltman JD, Lambers ME, van Nimwegen M, Hendriks RW, Hoogsteden HC, Aerts JG, Hegmans JP (2010) COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function. BMC Cancer 10:464

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513

    Article  PubMed  CAS  Google Scholar 

  50. Rodriguez PC, Hernadez CP, Quiceno D, Rubinett SM, Zabaleta J, Ochoa JB, Ochoa AC (2005) Arginase 1 in myeloid suppressor cells in induced by COX-2 in lung carcinoma. J Exp Med 202:931–939

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Talmadge JE, Hood KC, Zobel LC, Shafer LR, Coles M, Toth B (2007) Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion. Int Immunopharmacol 7:140–151

    Article  PubMed  CAS  Google Scholar 

  52. Stuehr DJ, Kwon NS, Nathan CF, Griffith OW, Feldman PL, Wiseman J (1991) N omega-hydoxy-l-arginine is an intermediate in the biosynthesis of nitric oxide from l-arginine. J Biol Chem 266:6259–6263

    PubMed  CAS  Google Scholar 

  53. Reisser D, Onier-Cherix N, Jennin JF (2002) Arginase activity is inhibited by L-NAME, both in vitro and in vivo. J Enzyme Inhibit Med Chem 17:267–270

    Article  CAS  Google Scholar 

  54. Zheng Y, Xu M, Li X, Jia J, Fan K, Lai G (2012) Cimetidine suppresses lung tumor growth in mice trough proapoptosis of myeloid-derived suppressor cells. Mol Immunol 54:74–83

    Article  PubMed  CAS  Google Scholar 

  55. He D, Li H, Yasuf N, Elmets CA, Li J, Mounts JD, Xu H (2010) IL-17 promotes tumor development through the induction of promoting microenvironments at tumor sites and myeloid-derived suppressor cells. J Immunol 184:2281–2288

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Bastien J, Richette-Egly C (2004) Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 328:1–16

    Article  PubMed  CAS  Google Scholar 

  57. Hengesbach LM, Hoag KA (2004) Physiological concentrations of retinoic acid favor myeloid dendritic cells development over granulocyte development in cultures of bone marrow cells from mice. J Nutr 134:2653–2659

    PubMed  CAS  Google Scholar 

  58. Kusmartsev S, Su Z, Heiser A, Dannul J, Erushanov E, Kubler H et al (2008) Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res 14:8270–8278

    Article  PubMed  CAS  Google Scholar 

  59. Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ et al (2006) All-trans retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 66:9299–9307

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Ugel S, Delpozzo F, Desantis G, Papalini F, Simonato F, Sonda N, Zilio S, Bronte V (2009) Cur Opin Pharmacol 9:470–481

    Article  CAS  Google Scholar 

  61. Ko JS, Zea AH, Rini BI, Irelan JL, Elon P, Cohen P et al (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15:2148–2157

    Article  PubMed  CAS  Google Scholar 

  62. Nakamura I, Shibata M, Gonda K, Yazawa T, Shimura T, Anazawa T et al (2013) Serum levels of vascular endothelial growth factor are increased and correlate with malnutrition, immunosuppression involving MDSCs and systemic inflammation in patients with cancer of the digestive system. Oncol Let 5:1682–1686

    CAS  Google Scholar 

  63. Rodriguez PC, Emstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, Ochoa AC (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69:1553–1560

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM (2005) Gemcitabine selectively eliminates splenic Gr-1+?CD11b+ myeloid suppressor cells I tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11:6713–6721

    Article  PubMed  CAS  Google Scholar 

  65. Le HK, Graham L, Cha E, Morales JK, Manjili MH, Bear HD (2009) Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int Immunopharmacol 9:900–909

    Article  PubMed  CAS  Google Scholar 

  66. Tseng CW, Hung CF, Alvarez RD, Trimble C, Huh WK, Kim D et al (2008) Pretreatment with cisplatin enhances E7-specific CD8; T-cell-mediated antitumor immunity induced by DNA vaccination. Clin Cancer Res 14:3185–3192

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Naiditch H, Shurin MR, Shurin GV (2011) Targeting myeloid regulatory cells in cancer by chemotherapeutic agents. Immunol Res 50:276–285

    Article  PubMed  CAS  Google Scholar 

  68. Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chebriaux A et al (2010) 5-fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 70:3052–3061

    Article  PubMed  CAS  Google Scholar 

  69. Shibata M, Gonda K, Nakamura I, Shimura T, Ohki S, Ohtake T et al (2013) Increased myeloid-derived suppressor cells (MDSC) correlated to immune suppression and chronic inflammation in patients with cancer. In: Cancer immunology and immunotherapy Keystone Symposium, Vancouver

    Google Scholar 

  70. Kusmartsev S, Cheng F, Yu B, Nefedova Y, Sotomayor E, Lush R, Gabrilovich DI (2003) All-trans-retinoic-acid eliminates immature myeloid cells from tumor bearing mice and improves the effect of vaccination. Cancer Res 63:4441–4449

    PubMed  CAS  Google Scholar 

  71. De Santo C, Serafini P, Marigo I, Dolcetti L, Bolla M, Del Soldato P et al (2005) Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci U S A 102:4185–4190

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Nagaraj S, Youn JI, Weber H, Iclozan C, Lu L, Cotter MJ et al (2010) Anti-inflammatory triterpenoid blocks immune suppressive function of MDSC and improves immune response in cancer. Clin Cancer Res 16:1812–1823

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP (2007) Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res 67:11438–11446

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Shibata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Shibata, M., Gonda, K., Takenoshita, S. (2016). MDSC: Myeloid-Derived Suppressor Cells. In: Yamaguchi, Y. (eds) Immunotherapy of Cancer. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55031-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55031-0_22

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55030-3

  • Online ISBN: 978-4-431-55031-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics