Skip to main content

Novel Adjuvants

  • Chapter
  • First Online:
  • 2262 Accesses

Abstract

Several clinical trials suggested that one promising immunotherapeutic approach is cancer vaccines, containing novel adjuvants capable of stimulating innate immunity to result in breakage of immunotolerance in the tumor microenvironment and development of potent antitumor immune responses. In particular, agonists for TLR and STING are actively investigated adjuvants due to their high potential for induction of antitumor immune responses. Moreover, recent efforts to improve the efficacy of TLR9 agonist as adjuvants by coupling with delivery molecules and nanoparticle and/or by mixing with other innate immune stimuli such as STING agonists revealed novel cancer vaccine adjuvants with high efficacy. In this review, we introduce recent advances in the development of novel adjuvants for cancer immunotherapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rosenberg SA (2001) Progress in human tumour immunology and immunotherapy. Nature 411:380–384

    Article  PubMed  CAS  Google Scholar 

  2. Cheever MA, Higano CS (2011) PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 17:3520–3526

    Article  PubMed  Google Scholar 

  3. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    Article  PubMed  CAS  Google Scholar 

  5. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  PubMed  CAS  Google Scholar 

  6. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271

    Article  PubMed  CAS  Google Scholar 

  7. Ossendorp F, Offringa R, Melief CJM (1999) CD4 T cells and their role in antitumor immune responses. J Exp Med 189:753–756

    Article  PubMed Central  PubMed  Google Scholar 

  8. Pedroza-Pacheco I, Madrigal A, Saudemont A (2013) Interaction between natural killer cells and regulatory T cells: perspectives for immunotherapy. Cell Mol Immunol 10:222–229

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Gilewski TA, Ragupathi G, Dickler M, Powell S, Bhuta S, Panageas K et al (2007) Immunization of high-risk breast cancer patients with clustered sTn-KLH conjugate plus the immunologic adjuvant QS-21. Clin Cancer Res 13:2977–2985

    Article  PubMed  CAS  Google Scholar 

  10. Galonic DP, Gin DY (2009) Chemical glycosylation in the synthesis of glycoconjugate antitumor vaccines. Nature 446:1000–1007

    Article  CAS  Google Scholar 

  11. Ragupathi G, Gardner JR, Livingston PO, Gin DY (2011) Natural and synthetic saponin adjuvant QS-21 for vaccines against cancer. Expert Rev Vaccines 10:463–470

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Sanders MT, Brown LE, Deliyannis G, Pearse MJ (2005) ISCOM-based vaccines: the second decade. Immunol Cell Biol 83:119–128

    Article  PubMed  CAS  Google Scholar 

  13. Chen Q, Jackson H, Parente P, Luke T, Rizkalla M, Tai TY et al (2004) Immunodominant CD4+ responses identified in a patient vaccinated with full-length NY-ESO-1 formulated with ISCOMATRIX adjuvant. Proc Natl Acad Sci U S A 101:9363–9368

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Ian DD, Weisan C, Heather J, Phillip P, Mark S, Wendie H et al (2004) Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4+ and CD8+ T cell responses in humans. Proc Natl Acad Sci U S A 102:10697–10702

  15. Saupe A, Mcburney W, Rades T, Hook S (2006) Immunostimulatory colloidal delivery systems for cancer vaccines. Expert Opin Drug Deliv 3:345–354

    Article  PubMed  CAS  Google Scholar 

  16. Shek PN, Yung BY, Stanacev NZ (1983) Comparison between multilamellar and unilamellar liposomes in enhancing antibody formation. Immunology 49:37–44

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Gregoriadis G (1990) Immunological adjuvants: a role for liposomes. Immunol Today 11:89–97

    Article  PubMed  CAS  Google Scholar 

  18. HogenEsch H (2013) Mechanism of immunopotentiation and safety of aluminum adjuvants. Front Immunol 3:1–13

    Article  Google Scholar 

  19. Gavin AL, Hoebe K, Duong B, Ota T, Martin C, Beutler B et al (2006) Adjuvant-enhanced antibody responses occur without Toll-like receptor signaling. Science 314:1936–1938

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Didierlaurent AM, Morel S, Lockman L, Giannini SL, Bisteau M, Carlsen H et al (2009) AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J Immunol 183:6186–6197

    Article  PubMed  CAS  Google Scholar 

  21. Marichal T, Ohata K, Bedoret D, Mesnil C, Sabatel C, Kobiyama K et al (2011) DNA released from dying host cells mediates aluminum adjuvant activity. Nat Med 8:996–1002

    Article  CAS  Google Scholar 

  22. Tritto E, Mosca F, De Gregorio E (2009) Mechanism of action of licensed vaccine adjuvants. Vaccine 27:3331–3334

    Article  PubMed  CAS  Google Scholar 

  23. Guy B (2007) The perfect mix: recent progress in adjuvant research. Nat Rev Microbiol 5:505–517

    Article  PubMed  Google Scholar 

  24. Aucouturier J, Dupuis L, Deville S, Ascarateil S, Ganne V (2002) Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev Vaccines 1:111–118

    Article  PubMed  CAS  Google Scholar 

  25. Miles AP, McClellan HA, Rausch KM, Zhu D, Whitmore MD, Singh S et al (2005) Montanide ISA 720 vaccines: quality control of emulsions, stability of formulated antigens, and comparative immunogenicity of vaccine formulations. Vaccine 23:2530–2539

    Article  PubMed  CAS  Google Scholar 

  26. Lawrence GW, Pye D, Saul A, Giddy AJ, Kemp R (1997) Phase I trial in humans of an oil-based adjuvant SEPPIC MONTANIDE ISA. Vaccine 15:176–178

    Article  PubMed  CAS  Google Scholar 

  27. Chianese-Bullock KA, Pressley J, Garbee C, Hibbitts S, Murphy C, Yamshchikov G et al (2005) MAGE-A1-, MAGE-A10-, and gp100-derived peptides are immunogenic when combined with granulocyte-macrophage colony-stimulating factor and montanide ISA-51 adjuvant and administered as part of a multipeptide vaccine for melanoma. J Immunol 174:3080–3086

    Article  PubMed  CAS  Google Scholar 

  28. Podda A (2001) The adjuvanted influenza vaccines with novel adjuvants: experience with the MF59-adjuvanted vaccine. Vaccine 19:2673–2680

    Article  PubMed  CAS  Google Scholar 

  29. Yang M, Yan Y, Fang M, Wan M, Wu X, Zhang X et al (2012) MF59 formulated with CpG ODN as a potent adjuvant of recombinant HSP65-MUC1 for inducing anti-MUC1+ tumor immunity in mice. Int Immunopharmacol 13:408–416

    Article  PubMed  CAS  Google Scholar 

  30. Watts C, West MA, Zaru R (2010) TLR signalling regulated antigen presentation in dendritic cells. Curr Opin Immunol 22:124–130

    Article  PubMed  CAS  Google Scholar 

  31. Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327:291–295

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Takaoka A, Tamura T, Taniguchi T (2008) Interferon regulatory factor family of transcription factors and regulation of oncogenesis. Cancer Sci 99:467–478

    Article  PubMed  CAS  Google Scholar 

  33. Jinushi M (2012) The role of innate immune signals in antitumor immunity. Oncoimmunology 1:189–194

    Article  PubMed Central  PubMed  Google Scholar 

  34. Hartmann G, Krieg AM (2000) Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol 164:944–953

    Article  PubMed  CAS  Google Scholar 

  35. Wagner H (2004) The immunobiology of the TLR9 subfamily. Trends Immunol 25:381–386

    Article  PubMed  CAS  Google Scholar 

  36. Krieg AM (2006) Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov 5:471–484

    Article  PubMed  CAS  Google Scholar 

  37. Klinman DM (2004) Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 4:1–10

    Article  CAS  Google Scholar 

  38. Pashenkov M, Goëss G, Wagner C, Hörmann M, Jandl T, Moser A et al (2006) Phase II trial of a toll-like receptor 9-activating oligonucleotide in patients with metastatic melanoma. J Clin Oncol 24:5716–5724

    Article  PubMed  CAS  Google Scholar 

  39. Manegold C, Gravenor D, Woytowitz D, Mezger J, Hirsh V, Albert G et al (2008) Randomized phase II trial of a toll-like receptor 9 agonist oligodeoxynucleotide, PF-3512676, in combination with first-line taxane plus platinum chemotherapy for advanced-stage non-small-cell lung cancer. J Clin Oncol 26:3979–3986

    Article  PubMed  CAS  Google Scholar 

  40. Cho HJ, Takabayashi K, Cheng P, Nguyen M, Corr M, Tuck S et al (2000) Immunostimulatory DNA-based vaccines induce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism. Nat Biotechnol 18:509–514

    Article  PubMed  CAS  Google Scholar 

  41. De Titta A, Ballester M, Julier Z, Nembrini C, Jeanbart L, Van Der Vlies AJ (2013) Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose. Proc Natl Acad Sci U S A 110:19902–19907

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Gungor B, Yagci FC, Tincer G, Bayyurt B, Alpdundar E, Yildiz S et al (2014) CpG ODN nanorings induce IFNα from plasmacytoid dendritic cells and demonstrate potent vaccine adjuvant activity. Sci Transl Med 6:1–11

    Article  CAS  Google Scholar 

  43. Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M et al (2011) STING is a direct innate immune sensor of cyclic di-GMP. Nature 478:515–518

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. McWhirter SM, Barbalat R, Monroe KM, Fontana MF, Hyodo M, Joncker NT et al (2009) A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP. J Exp Med 206:1899–1911

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Li X-D, Wu J, Gao D, Wang H, Sun L, Chen ZJ (2013) Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341:1390–1394

    Article  PubMed  CAS  Google Scholar 

  46. Tang CK, Aoshi T, Jounai N, Ito J, Ohata K, Kobiyama K et al (2013) The chemotherapeutic agent DMXAA as a unique IRF3-dependent type-2 vaccine adjuvant. PLoS One 8:1–6

    Google Scholar 

  47. Temizoz B, Kuroda E, Ohata K, Jounai N, Ozasa K, Kobiyama K, Aoshi T, Ishii KJ (2015) TLR9 and STING agonists synergistically induce innate and adaptive type II IFN. Eur J Immunol 45(4):1159–1169

    Google Scholar 

  48. Kobiyama K, Aoshi T, Narita H, Kuroda E, Hayashi M, Tetsutani K et al (2014) Nonagonistic Dectin-1 ligand transforms CpG into a multitask nanoparticulate TLR9 agonist. Proc Natl Acad Sci U S A 111:3086–3091

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Chassin C, Picardeau M, Goujon J-M, Bourhy P, Quellard N, Darche S et al (2009) TLR4- and TLR2-mediated B cell responses control the clearance of the bacterial pathogen, Leptospira interrogans. J Immunol 183:2669–2677

    Article  PubMed  CAS  Google Scholar 

  50. Taylor RC, Richmond P, Upham JW (2006) Toll-like receptor 2 ligands inhibit TH2 responses to mite allergen. J Allergy Clin Immunol 117:1148–1154

    Article  PubMed  CAS  Google Scholar 

  51. Szomolanyi-Tsuda E, Liang X, Welsh RM, Kurt-Jones EA, Finberg RW (2006) Role for TLR2 in NK cell-mediated control of murine cytomegalovirus in vivo. J Virol 80:4286–4291

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Borsutzky S, Kretschmer K, Becker PD, Mühlradt PF, Kirschning CJ, Weiss S et al (2005) The mucosal adjuvant macrophage-activating lipopeptide-2 directly stimulates B lymphocytes via the TLR2 without the need of accessory cells. J Immunol 174:6308–6313

    Article  PubMed  CAS  Google Scholar 

  53. Rharbaoui F, Drabner B, Borsutzky S, Winckler U, Morr M, Ensoli B et al (2002) The mycoplasma-derived lipopeptide MALP-2 is a potent mucosal adjuvant. Eur J Immunol 32:2857–2865

    Article  PubMed  CAS  Google Scholar 

  54. Schmidt KN, Leung B, Kwong M, Zarember KA, Satyal S, Navas TA et al (2004) APC-independent activation of NK cells by the Toll-like receptor 3 agonist double-stranded RNA. J Immunol 172:138–143

    Article  PubMed  CAS  Google Scholar 

  55. Navabi H, Jasani B, Reece A, Clayton A, Tabi Z, Donninger C et al (2009) A clinical grade poly I: C-analogue (Ampligen®) promotes optimal DC maturation and Th1-type T cell responses of healthy donors and cancer patients in vitro. Vaccine 27:107–115

    Article  PubMed  CAS  Google Scholar 

  56. Fujimoto C, Nakagawa Y, Ohara K, Takahashi H (2004) Polyriboinosinic polyribocytidylic acid [poly(I:C)]/TLR 3 signaling allows class I processing of exogenous protein and induction of HIV-specific CD8+ cytotoxic T lymphocytes. Int Immunol 16:55–63

    Article  PubMed  CAS  Google Scholar 

  57. Stahl-Hennig C, Eisenblätter M, Jasny E, Rzehak T, Tenner-Racz K, Trumpfheller C et al (2009) Synthetic double-stranded RNAs are adjuvants for the induction of t helper 1 and humoral immune responses to human papillomavirus in rhesus macaques. PLoS Pathog 5:1–15

    Google Scholar 

  58. Tan AM, Chen H-C, Pochard P, Eisenbarth SC, Herrick CA, Bottomly HK (2010) TLR4 signaling in stromal cells is critical for the initiation of allergic Th2 responses to inhaled antigen. J Immunol 184:3535–3544

    Article  PubMed  CAS  Google Scholar 

  59. Hayashi EA, Granato A, Paiva LS, Bertho AL, Bellio M, Nobrega A (2010) TLR4 promotes B cell maturation: independence and cooperation with B lymphocyte-activating factor. J Immunol 184:4662–4672

    Article  PubMed  CAS  Google Scholar 

  60. Nguyen CT, Hong SH, Sin JI, Vu HVD, Jeong K, Cho KO et al (2013) Flagellin enhances tumor-specific CD8+ T cell immune responses through TLR5 stimulation in a therapeutic cancer vaccine model. Vaccine 31:3879–3887

    Article  PubMed  CAS  Google Scholar 

  61. Vijay-Kumar M, Carvalho FA, Aitken JD, Fifadara NH, Gewirtz AT (2010) TLR5 or NLRC4 is necessary and sufficient for promotion of humoral immunity by flagellin. Eur J Immunol 40:3528–3534

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Didierlaurent A, Ferrero I, Otten LA, Dubois B, Reinhardt M, Carlsen H et al (2004) Flagellin promotes myeloid differentiation factor 88-dependent development of Th2-type response. J Immunol 172:6922–6930

    Article  PubMed  CAS  Google Scholar 

  63. Marin-Esteban V, Abdul M, Charron D, Haziot A, Mooney N (2008) Dendritic cells differentiated in the presence of a single-stranded viral RNA sequence conserve their ability to activate CD4 T lymphocytes but lose their capacity for Th1 polarization. Clin Vaccine Immunol 15:954–962

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Rechtsteiner G, Warger T, Osterloh P, Schild H, Radsak MP (2005) Priming of CTL by transcutaneous peptide immunization with imiquimod. J Immunol 174:2476–2480

    Article  PubMed  CAS  Google Scholar 

  65. Johnston D, Bystryn JC (2006) Topical imiquimod is a potent adjuvant to a weakly-immunogenic protein prototype vaccine. Vaccine 24:1958–1965

    Article  PubMed  CAS  Google Scholar 

  66. Trumpfheller C, Caskey M, Nchinda G, Longhi MP, Mizenina O, Huang Y et al (2008) The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine. Proc Natl Acad Sci U S A 105:1–6

    Article  Google Scholar 

  67. Fritz JH, Le Bourhis L, Sellge G, Magalhaes JG, Fsihi H, Kufer TA et al (2007) Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 26:445–459

    Article  PubMed  CAS  Google Scholar 

  68. Magalhaes JG, Fritz JH, Le Bourhis L, Sellge G, Travassos LH, Selvanantham T et al (2008) Nod2-dependent Th2 polarization of antigen-specific immunity. J Immunol 181:7925–7935

    Article  PubMed  CAS  Google Scholar 

  69. Besnard AG, Guillou N, Tschopp J, Erard F, Couillin I, Iwakura Y et al (2011) NLRP3 inflammasome is required in murine asthma in the absence of aluminum adjuvant. Eur J Allergy Clin Immunol 66:1047–1057

    Article  CAS  Google Scholar 

  70. Zenaro E, Donini M, Dusi S (2009) Induction of Th1/Th17 immune response by mycobacterium tuberculosis: role of dectin-1, mannose receptor, and DC-SIGN. J Leukoc Biol 86:1393–1401

    Article  PubMed  CAS  Google Scholar 

  71. Agrawal S, Gupta S, Agrawal A (2010) Human dendritic cells activated via dectin-1 are efficient at priming th17, cytotoxic CD8 T and B cell responses. PLoS One 5:1–8

    Article  CAS  Google Scholar 

  72. Saijo S, Ikeda S, Yamabe K, Kakuta S, Ishigame H, Akitsu A et al (2010) Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32:681–691

    Article  PubMed  CAS  Google Scholar 

  73. Barrett NA, Rahman OM, Fernandez JM, Parsons MW, Xing W, Austen KF et al (2011) Dectin-2 mediates Th2 immunity through the generation of cysteinyl leukotrienes. J Exp Med 208:593–604

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Desel C, Werninghaus K, Ritter M, Jozefowski K, Wenzel J, Russkamp N et al (2013) The mincle-activating adjuvant TDB induces MyD88-dependent Th1 and Th17 responses through IL-1R signaling. PLoS One 8:1–9

    Article  CAS  Google Scholar 

  75. Dombrowski Y, Peric M, Koglin S, Kaymakanov N, Schmezer V, Reinholz M et al (2012) Honey bee (Apis mellifera) venom induces AIM2 inflammasome activation in human keratinocytes. Allergy 67:1400–1407

    Article  PubMed  CAS  Google Scholar 

  76. Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S et al (2010) IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 11:997–1004

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Sjölander A, van’t Land B, Lövgren BK (1997) Iscoms containing purified Quillaja saponins upregulate both Th1-like and Th2-like immune responses. Cell Immunol 177:69–76

    Article  PubMed  Google Scholar 

  78. Duewell P, Kisser U, Heckelsmiller K, Hoves S, Stoitzner P, Koernig S et al (2011) ISCOMATRIX adjuvant combines immune activation with antigen delivery to dendritic cells in vivo leading to effective cross-priming of CD8+ T cells. J Immunol 187:55–63

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Stegmann T, Kamphuis T, Meijerhof T, Goud E, de Haan A, Wilschut J (2010) Lipopeptide-adjuvanted respiratory syncytial virus virosomes: a safe and immunogenic non-replicating vaccine formulation. Vaccine 28:5543–5550

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken J. Ishii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Temizoz, B., Kuroda, E., Kobiyama, K., Aoshi, T., Ishii, K.J. (2016). Novel Adjuvants. In: Yamaguchi, Y. (eds) Immunotherapy of Cancer. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55031-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55031-0_17

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55030-3

  • Online ISBN: 978-4-431-55031-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics