Skip to main content

Pattern Recognition by Dendritic Cells and Its Application to Vaccine Adjuvant for Antitumor Immunotherapy

  • Chapter
  • First Online:
Immunotherapy of Cancer

Abstract

Dendritic cells (DCs) initiate the maturation to a specific stage in response to stimuli with microbial pattern molecules (PAMP) and trigger activation of host immune response together with antigens (Ags). Recently, subsets of dendritic cells have been subdivided with surface markers into DCs with high Ag-presenting capacity and those with less capacity. These DC subsets have been found to induce various effectors in response to their different compositions of pattern recognition receptors (PRRs). In human, the best Ag-presenting cell is CD141+ DC, while in the mouse the best one is CD8a+ DC. In this paper, we describe the properties of PRRs in host DC subsets and outline the induction mechanism of effector cells. PAMP is usually called “adjuvant” in the field of tumor immunology. I will explain the recent launch of the obvious mechanisms by which the DC-dependent NK activation and antitumor CTL induction are promoted by adjuvants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

antigen-presenting cell

BCGCWS:

Bacillus Calmette-Guerin cell-wall skeleton

BDCA:

Blood Dendritic Cell Antigens

DAMP:

damage-associated molecular patterns

FACS:

flow cytometry

GM-CSF:

granulocyte-macrophage-coloney stimulating factor

INAM:

IRF3-dependent NK cell activating molecule

IRAK:

IL-1 Receptor–associated Kinase

IRF:

interferon-regulatory factor

Mal/TIRAP:

TIRAP toll-interleukin 1 receptor (TIR) domain containing adaptor

MALP:

macrophage-activating lipopeptide

MAVS:

mitochondrial antiviral signaling protein

qPCR:

quantitative PCR

TICAM:

Toll-IL-1R homology domain-containing adaptor molecule

TRAM:

TRIF-associated adaptor molecule

References

  1. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5(10):987–995

    Article  PubMed  CAS  Google Scholar 

  2. Franchi L et al (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10(3):241–247

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Nikoopour E et al (2008) Therapeutic benefits of regulating inflammation in autoimmunity. Inflamm Allergy Drug Targets 7(3):203–210

    Article  PubMed  CAS  Google Scholar 

  4. Medzhitov R et al (1997) A human homologue of the drosophila toll protein signals activation of adaptive immunity. Nature 388(6640):394–397

    Article  PubMed  CAS  Google Scholar 

  5. Medzhitov R, Janeway CA Jr (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91(3):295–298

    Article  PubMed  CAS  Google Scholar 

  6. Akira S (2003) Toll-like receptor signaling. J Biol Chem 278(40):38105–38108

    Article  PubMed  CAS  Google Scholar 

  7. Hoshino K et al (2006) IkappaB kinase-alpha is critical for interferon-alpha production induced by Toll-like receptors 7 and 9. Nature 440(7086):949–953

    Article  PubMed  CAS  Google Scholar 

  8. Rathinam VA, Vanaja SK, Waggoner L, Sokolovska A, Becker C, Stuart LM, Leong JM, Fitzgerald KA (2012) TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150(3):606–619

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Matsumoto M, Seya T (2008) TLR3: interferon induction by double-stranded RNA including poly(I:C). Adv Drug Deliv Rev 60(7):805–812

    Article  PubMed  CAS  Google Scholar 

  10. Duthie MS, Windish HP, Fox CB, Reed SG (2011) Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev 239(1):178–196

    Article  PubMed  CAS  Google Scholar 

  11. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303(5663):1526–1529

    Article  PubMed  CAS  Google Scholar 

  12. Reynolds JM, Dong C (2013) Toll-like receptor regulation of effector T lymphocyte function. Trends Immunol 34(10):511–519

    Article  PubMed  CAS  Google Scholar 

  13. Yamazaki S et al (2003) Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J Exp Med 198(2):235–247

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Miyake T et al (2009) Poly I:C-induced activation of NK cells by CD8alpha+ dendritic cells via the IPS-1 and TRIF-dependent pathways. J Immunol 183(4):2522–2528

    Article  PubMed  CAS  Google Scholar 

  15. Tezuka H et al (2007) Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature 448(7156):929–933

    Article  PubMed  CAS  Google Scholar 

  16. Atarashi K et al (2008) ATP drives lamina propria T(H)17 cell differentiation. Nature 455(7214):808–812

    Article  PubMed  CAS  Google Scholar 

  17. Akazawa T et al (2007) Antitumor NK activation induced by the Toll-like receptor 3-TICAM-1 (TRIF) pathway in myeloid dendritic cells. Proc Natl Acad Sci U S A 104(1):252–2527

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Ebihara T et al (2008) Hepatitis C virus-infected hepatocytes extrinsically modulate dendritic cell maturation to activate T cells and natural killer cells. Hepatology 48(1):48–58

    Article  PubMed  CAS  Google Scholar 

  19. Kasamatsu J, Azuma M, Oshiumi H, Morioka Y, Okabe M, Ebihara T, Matsumoto M, Seya T (2014) INAM plays a critical role in IFN-γ production by NK cells interacting with polyinosinic-polycytidylic acid-stimulated accessory cells. J Immunol 193(10):5199–5207

    Article  PubMed  CAS  Google Scholar 

  20. Tatematsu M, Nishikawa F, Seya T, Matsumoto M (2013) Toll-like receptor 3 recognizes incomplete stem structures in single-stranded viral RNA. Nat Commun 4:1833

    Article  PubMed  CAS  Google Scholar 

  21. Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, Chen CJ, Dunbar PR, Wadley RB, Jeet V, Vulink AJ, Hart DN, Radford KJ (2007) Human CD141+(BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 207(6):1247–1260

    Article  CAS  Google Scholar 

  22. Azuma M, Takeda Y, Nakajima H, Sugiyama H, Ebihara T, Oshiumi H, Matsumoto M, Seya T (2015) BATF3 fundamentally supports TLR3-derived IL-12 induction in CD8α+ dendritic cell, which promotes antitumor T cell responses by poly(I:C). Cancer Res (in Press)

    Google Scholar 

  23. Colonna M, Cella M (2007) Crosspresentation: plasmacytoid dendritic cells are in the business. Immunity 27(3):419–421

    Article  PubMed  CAS  Google Scholar 

  24. Schmidt J, Welsch T, Jäger D, Mühlradt PF, Büchler MW, Märten A (2007) Intratumoural injection of the toll-like receptor-2/6 agonist ‘macrophage-activating lipopeptide-2’ in patients with pancreatic carcinoma: a phase I/II trial. Br J Cancer 97(5):598–604. Alexandroff AB et al (1999) BCG immunotherapy of bladder cancer: 20 years on. Lancet 353(9165):1689–1694

    Google Scholar 

  25. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567

    Article  PubMed  CAS  Google Scholar 

  26. Gerner MY, Heltemes-Harris LM, Fife BT, Mescher MF (2013) Cutting edge: IL-12 and type I IFN differentially program CD8 T cells for programmed death 1 re-expression levels and tumor control. J Immunol 191:1011–1015

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Shime H, Matsumoto M, Oshiumi H, Tanaka S, Nakane A et al (2011) Toll-like receptor 3 signaling converts tumor-supporting myeloid cells to tumoricidal effectors. Proc Natl Acad Sci USA 109:2066–2071

    Article  Google Scholar 

  28. Alexandroff AB et al (1999) BCG immunotherapy of bladder cancer: 20 years on. Lancet 353(9165):1689–1694

    Article  PubMed  CAS  Google Scholar 

  29. Kodama K et al (2009) Innate immune therapy with a Bacillus Calmette-Guérin cell wall skeleton after radical surgery for non-small cell lung cancer: a case-control study. Surg Today 39(3):194–200

    Article  PubMed  Google Scholar 

  30. Rosenberg SA et al (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Akazawa T et al (2004) Adjuvant-mediated tumor regression and tumor-specific cytotoxic response are impaired in MyD88-deficient mice. Cancer Res 64(2):757–764

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to our lab members for invaluable discussions. This work was supported in part by the Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology (MEXT); “the Carcinogenic Spiral” a MEXT Grant-in-Project; the Ministry of Health, Labour and Welfare of Japan; the Takeda Foundation; the Yasuda Cancer Research Foundation; and the Kato Memorial Bioscience Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsukasa Seya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Seya, T., Azuma, M., Matsumoto, M. (2016). Pattern Recognition by Dendritic Cells and Its Application to Vaccine Adjuvant for Antitumor Immunotherapy. In: Yamaguchi, Y. (eds) Immunotherapy of Cancer. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55031-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55031-0_16

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55030-3

  • Online ISBN: 978-4-431-55031-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics