Advertisement

Peptide Vaccine

  • Koji Kono
Chapter

Abstract

Although induction of antitumor immune responses through cancer vaccine is theoretically promising and would be straightforward, it is currently difficult to prove the clinical benefits of cancer vaccine except for one phase III trial that has documented improved overall survival with the vaccine, Sipuleucel-T. In contrast, immune checkpoint blockade with anti-CTLA4 mAb and anti-PD-1 mAb has demonstrated clear evidence of objective responses including improved overall survival and tumor shrinkage, driving renewed enthusiasm for cancer immunotherapy in multiple cancer types. We are now facing new era of cancer immunotherapy with a great hope for the anticancer therapy.

Keywords

Esophageal Squamous Cell Carcinoma Cancer Vaccine Esophageal Squamous Cell Carcinoma Cell Antitumor Immune Response Esophageal Squamous Cell Carcinoma Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422CrossRefPubMedGoogle Scholar
  2. 2.
    Bachy E, Coiffier B (2014) Anti-PD1 antibody: a new approach to treatment of lymphomas. Lancet Oncol 15:7–8CrossRefPubMedGoogle Scholar
  3. 3.
    Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Huppa JB, Davis MM (2003) T-cell-antigen recognition and the immunological synapse. Nat Rev Immunol 3:973–983CrossRefPubMedGoogle Scholar
  5. 5.
    Masopust D, Schenkel JM (2013) The integration of T cell migration, differentiation and function. Nat Rev Immunol 13:309–320CrossRefPubMedGoogle Scholar
  6. 6.
    Tacken PJ, de Vries IJ, Torensma R, Figdor CG (2007) Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 7:790–802CrossRefPubMedGoogle Scholar
  7. 7.
    Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, Soares H et al (2004) In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 199:815–824PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Aranda F, Vacchelli E, Eggermont A, Galon J, Sautes-Fridman C, Tartour E et al (2013) Trial watch: peptide vaccines in cancer therapy. Oncoimmunology 2:e26621PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Drake CG, Lipson EJ, Brahmer JR (2014) Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol 11:24–37PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Agosti JM, Goldie SJ (2007) Introducing HPV vaccine in developing countries – key challenges and issues. N Engl J Med 356:1908–1910CrossRefPubMedGoogle Scholar
  11. 11.
    Paavonen J, Naud P, Salmeron J, Wheeler CM, Chow SN, Apter D et al (2009) Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet 374:301–314CrossRefPubMedGoogle Scholar
  12. 12.
    Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704CrossRefPubMedGoogle Scholar
  13. 13.
    Drake CG, Jaffee E, Pardoll DM (2006) Mechanisms of immune evasion by tumors. Adv Immunol 90:51–81CrossRefPubMedGoogle Scholar
  14. 14.
    Schwartzentruber DJ, Lawson DH, Richards JM, Conry RM, Miller DM, Treisman J et al (2011) gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 364:2119–2127PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Kono K, Iinuma H, Akutsu Y, Tanaka H, Hayashi N, Uchikado Y et al (2012) Multicenter, phase II clinical trial of cancer vaccination for advanced esophageal cancer with three peptides derived from novel cancer-testis antigens. J Transl Med 10:141PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE et al (2011) Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 29:330–336PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Slingluff CL Jr, Petroni GR, Chianese-Bullock KA, Smolkin ME, Ross MI, Haas NB et al (2011) Randomized multicenter trial of the effects of melanoma-associated helper peptides and cyclophosphamide on the immunogenicity of a multipeptide melanoma vaccine. J Clin Oncol 29:2924–2932PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Cecco S, Muraro E, Giacomin E, Martorelli D, Lazzarini R, Baldo P et al (2011) Cancer vaccines in phase II/III clinical trials: state of the art and future perspectives. Curr Cancer Drug Targets 11:85–102CrossRefPubMedGoogle Scholar
  19. 19.
    Lesterhuis WJ, Haanen JB, Punt CJ (2011) Cancer immunotherapy – revisited. Nat Rev Drug Discov 10:591–600CrossRefPubMedGoogle Scholar
  20. 20.
    Mizukami Y, Kono K, Daigo Y, Takano A, Tsunoda T, Kawaguchi Y et al (2008) Detection of novel cancer-testis antigen-specific T-cell responses in TIL, regional lymph nodes, and PBL in patients with esophageal squamous cell carcinoma. Cancer Sci 99:1448–1454CrossRefPubMedGoogle Scholar
  21. 21.
    Kono K, Mizukami Y, Daigo Y, Takano A, Masuda K, Yoshida K et al (2009) Vaccination with multiple peptides derived from novel cancer-testis antigens can induce specific T-cell responses and clinical responses in advanced esophageal cancer. Cancer Sci 100:1502–1509CrossRefPubMedGoogle Scholar
  22. 22.
    Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C et al (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18:1254–1261CrossRefPubMedGoogle Scholar
  23. 23.
    Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ (2005) Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 5:615–625CrossRefPubMedGoogle Scholar
  24. 24.
    Brichard VG, Lejeune D (2007) GSK’s antigen-specific cancer immunotherapy programme: pilot results leading to phase III clinical development. Vaccine 27(25 Suppl 2):B61–B71CrossRefGoogle Scholar
  25. 25.
    van Elsas A, Hurwitz AA, Allison JP (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 190:355–366PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Li B, VanRoey M, Wang C, Chen TH, Korman A, Jooss K (2009) Anti-programmed death-1 synergizes with granulocyte macrophage colony-stimulating factor – secreting tumor cell immunotherapy providing therapeutic benefit to mice with established tumors. Clin Cancer Res 15:1623–1634CrossRefPubMedGoogle Scholar
  27. 27.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Department of SurgeryNational University of SingaporeSingaporeSingapore
  2. 2.Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore

Personalised recommendations