Skip to main content

Stabilization Control of Quasi-periodic Orbits

  • Chapter
  • First Online:
Analysis and Control of Complex Dynamical Systems

Part of the book series: Mathematics for Industry ((MFI,volume 7))

Abstract

A quasi-periodic orbit possesses the properties of both a periodic orbit and a chaotic orbit, which are almost periodic and aperiodic, respectively. Whereas the stabilization of a periodic orbit is widely discussed, that of a quasi-periodic orbit remains an enigma because of its aperiodicity. We focus on a quasi-periodic orbit on an invariant closed curve in discrete-time systems, which is the simplest case of dynamics on a high-dimensional invariant torus. In this case, a quasi-periodic orbit can be characterized by its rotation number, which is reflected in the design of control methods. We apply three control methods, the external force control, the delayed feedback control, and the pole assignment method, to stabilize an unstable quasi-periodic orbit. Although these control methods have been used to stabilize unstable periodic orbits, we show that they are also applicable to unstable quasi-periodic orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruin, H.: Numerical determination of the continued fraction expansion of the rotation number. Physica D: Nonlinear Phenomena 59(1–3), 158–168 (1992). http://dx.doi.org/10.1016/0167-2789(92)90211-5

  2. Ciocci, M.C., Litvak-Hinenzon, A., Broer, H.: Survey on dissipative KAM theory including quasi-periodic bifurcation theory based on lectures by Henk Broer. In: Montaldi, J., Ratiu, T. (eds.) Peyresq Lectures in Geometric Mechanics and Symmetry. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  3. Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985). doi:10.1103/RevModPhys.57.617

  4. Fujisaka, H., Yamada, T.: Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69(1), 32–47 (1983). doi:10.1143/PTP.69.32

    Article  MATH  MathSciNet  Google Scholar 

  5. Ichinose, N., Komuro, M.: Delayed feedback control and phase reduction of unstable quasi-periodic orbits. Chaos: Interdisc. J. Nonlinear Sci. 24, 033137 (2014). http://dx.doi.org/10.1063/1.4896219

  6. Kamiyama, K., Komuro, M., Endo, T.: Algorithms for obtaining a saddle torus between two attractors. I. J. Bifurcat. Chaos 23(9), 1330032 (2013). http://dx.doi.org/10.1142/S0218127413300322

  7. Kaneko, K.: Overview of coupled map lattices. Chaos: Interdisc. J. Nonlinear Sci. 2(3), 279–282 (1992). http://dx.doi.org/10.1063/1.165869

  8. Khinchin, A., Eagle, H.: Continued Fractions. Dover Books on Mathematics. Dover Publications, New York (1997)

    Google Scholar 

  9. MacKay, R.: A simple proof of Denjoy’s theorem. Math. Proc. Cambridge Philos. Soc. 103(2), 299–303 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ott, E., Grebogi, C., Yorke, J.A.: Controlling Chaos. Phys. Rev. Lett. 64, 1196–1199 (1990). doi:10.1103/PhysRevLett.64.1196

  11. Pavani, R.: The numerical approximation of the rotation number of planar maps. Comput. Math. Appl. 33(5), 103–110 (1997). http://dx.doi.org/10.1016/S0898-1221(97)00023-0

  12. Pecora, L.M., Carroll, T.L., Johnson, G.A., Mar, D.J., Heagy, J.F.: Fundamentals of synchronization in chaotic systems, concepts, and applications. Chaos: Interdisc. J. Nonlinear Sci. 7(4), 520–543 (1997). http://dx.doi.org/10.1063/1.166278

  13. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170(6), 421–428 (1992). http://dx.doi.org/10.1016/0375-9601(92)90745-8

  14. Veldhuizen, M.V.: On the numerical approximation of the rotation number. J. Comput. Appl. Math. 21(2), 203–212 (1988). http://dx.doi.org/10.1016/0377-0427(88)90268-3

  15. Wonham, W.: On pole assignment in multi-input controllable linear systems. IEEE Trans. Autom. Control 12(6), 660–665 (1967). doi:10.1109/TAC.1967.1098739

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natushiro Ichinose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ichinose, N., Komuro, M. (2015). Stabilization Control of Quasi-periodic Orbits. In: Aihara, K., Imura, Ji., Ueta, T. (eds) Analysis and Control of Complex Dynamical Systems. Mathematics for Industry, vol 7. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55013-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55013-6_8

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55012-9

  • Online ISBN: 978-4-431-55013-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics