Skip to main content

Mammalian and Bacterial Cytochromes P450 Involved in Steroid Hydroxylation : Regulation of Catalysis and Selectivity, and Potential Applications

  • Chapter
  • First Online:
Book cover Fifty Years of Cytochrome P450 Research

Abstract

In this review, recent results concerning the function and potential applications of mammalian steroid hydroxylase s, which catalyze the important tailoring of steroid molecules, are discussed. A better understanding of the mechanism and modulation of these enzymes opens up new perspectives and innovative possibilities for the treatment of diseases caused by misfunction of the steroidogenic enzymes such as overproduction of aldosterone leading to hypertension and congestive heart failure. In this chapter, special attention is given to the role of protein–protein interactions on the activity of mitochondrial steroid hydroxylase systems. In addition, the role of steroids themselves as important drugs is considered. The progress in recombinant protein expression and in genome sequencing (leading to the identification of novel cytochrome P450 systems) as well as the application of engineering of mammalian and bacterial steroid hydroxylase s opens up a tremendous reservoir of possibilities for the application of the corresponding strains and enzymes for the sustainable production of steroidal drugs and products. It can be expected that the extensive use of methods of both enzyme and strain engineering will further promote and increase the application of steroid hydroxylase s in biotechnological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beckert V, Dettmer R, Bernhardt R (1994) Mutations of tyrosine 82 in bovine adrenodoxin that affect binding to cytochromes P45011A1 and P45011B1 but not electron transfer. J Biol Chem 269:2568–2573

    CAS  PubMed  Google Scholar 

  • Berg A, Rafter JJ (1981) Studies on the substrate specificity and inducibility of cytochrome P-450meg. Biochem J 196:781–786

    PubMed Central  CAS  PubMed  Google Scholar 

  • Berg A, Carlstrom K, Gustafsson JA, Ingelman-Sundberg M (1975) Demonstration of a cytochrome P-450-dependent steroid 15beta-hydroxylase in Bacillus megaterium. Biochem Biophys Res Commun 66:1414–1423

    Article  CAS  PubMed  Google Scholar 

  • Berg A, Gustafsson JA, Ingelman-Sundberg M (1976) Characterization of a cytochrome P-450-dependent steroid hydroxylase system present in Bacillus megaterium. J Biol Chem 251:2831–2838

    CAS  PubMed  Google Scholar 

  • Berg A, Ingelman-Sundberg M, Gustafsson JA (1979) Isolation and characterization of cytochrome P-450meg. Acta Biol Med Ger 38:333–344

    CAS  PubMed  Google Scholar 

  • Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124:128–145

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt R, Waterman MR (2007) Cytochrome P450 and steroid hormone biosynthesis. In: Sigel A, Sigel H, Sigel RKO (eds) The ubiquitous roles of cytochrome P450 proteins. Wiley, Chichester, pp 361–369

    Chapter  Google Scholar 

  • Berwanger A, Eyrisch S, Schuster I, Helms V, Bernhardt R (2010) Polyamines: naturally occurring small molecule modulators of electrostatic protein–protein interactions. J Inorg Biochem 104:118–125

    Article  CAS  PubMed  Google Scholar 

  • Bichet A, Hannemann F, Rekowski M, Bernhardt R (2007) A new application of the yeast two-hybrid system in protein engineering. Protein Eng Des Sel 20:117–123

    Article  CAS  PubMed  Google Scholar 

  • Bleif S, Hannemann F, Lisurek M, von Kries JP, Zapp J, Dietzen M, Antes I, Bernhardt R (2011) Identification of CYP106A2 as a regioselective allylic bacterial diterpene hydroxylase. Chembiochem 12:576–582

    Article  CAS  PubMed  Google Scholar 

  • Bleif S, Hannemann F, Zapp J, Hartmann D, Jauch J, Bernhardt R (2012) A new Bacillus megaterium whole-cell catalyst for the hydroxylation of the pentacyclic triterpene 11-keto-beta-boswellic acid (KBA) based on a recombinant cytochrome P450 system. Appl Microbiol Biotechnol 93:1135–1146

    Article  CAS  PubMed  Google Scholar 

  • Bottner B, Bernhardt R (1996) Changed ratios of glucocorticoids/mineralocorticoids caused by point mutations in the putative I-helix regions of CYP11B1 and CYP11B2. Endocr Res 22:455–461

    CAS  PubMed  Google Scholar 

  • Bottner B, Schrauber H, Bernhardt R (1996) Engineering a mineralocorticoid- to a glucocorticoid-synthesizing cytochrome P450. J Biol Chem 271:8028–8033

    Article  CAS  PubMed  Google Scholar 

  • Bottner B, Denner K, Bernhardt R (1998) Conferring aldosterone synthesis to human CYP11B1 by replacing key amino acid residues with CYP11B2-specific ones. Eur J Biochem 252:458–466

    Article  CAS  PubMed  Google Scholar 

  • Bracco P, Janssen DB, Schallmey A (2013) Selective steroid oxyfunctionalisation by CYP154C5, a bacterial cytochrome P450. Microb Cell Fact 12(95):1–11

    Google Scholar 

  • Bureik M, Bernhardt R (2007) Steroid hydroxylation: microbial steroid biotransformations using cytochrome P450 enzymes. In: Schmid RD, Urlacher VB (eds) Modern biooxidation: enzymes, reactions and applications. Wiley, Weinheim

    Google Scholar 

  • Bureik M, Lisurek M, Bernhardt R (2002a) The human steroid hydroxylases CYP1B1 and CYP11B2. Biol Chem 383:1537–1551

    Article  CAS  PubMed  Google Scholar 

  • Bureik M, Schiffler B, Hiraoka Y, Vogel F, Bernhardt R (2002b) Functional expression of human mitochondrial CYP11B2 in fission yeast and identification of a new internal electron transfer protein, etp1. Biochemistry 41:2311–2321

    Article  CAS  PubMed  Google Scholar 

  • Bureik M, Zollner A, Schuster N, Montenarh M, Bernhardt R (2005) Phosphorylation of bovine adrenodoxin by protein kinase CK2 affects the interaction with its redox partner cytochrome P450scc (CYP11A1). Biochemistry 44:3821–3830

    Article  CAS  PubMed  Google Scholar 

  • Cao PR, Bernhardt R (1999a) Interaction of CYP11B1 (cytochrome P-45011 beta) with CYP11A1 (cytochrome P-450scc) in COS-1 cells. Eur J Biochem 262:720–726

    Article  CAS  PubMed  Google Scholar 

  • Cao PR, Bernhardt R (1999b) Modulation of aldosterone biosynthesis by adrenodoxin mutants with different electron transport efficiencies. Eur J Biochem 265:152–159

    Article  CAS  PubMed  Google Scholar 

  • Dietrich JA, Yoshikuni Y, Fisher KJ, Woolard FX, Ockey D, McPhee DJ, Renninger NS, Chang MC, Baker D, Keasling JD (2009) A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450(BM3). ACS Chem Biol 4:261–267

    Article  CAS  PubMed  Google Scholar 

  • Donova MV, Egorova OV (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94:1423–1447

    Article  CAS  PubMed  Google Scholar 

  • Dragan CA, Zearo S, Hannemann F, Bernhardt R, Bureik M (2005) Efficient conversion of 11-deoxycortisol to cortisol (hydrocortisone) by recombinant fission yeast Schizosaccharomyces pombe. FEMS Yeast Res 5:621–625

    Article  CAS  PubMed  Google Scholar 

  • Duport C, Spagnoli R, Degryse E, Pompon D (1998) Self-sufficient biosynthesis of pregnenolone and progesterone in engineered yeast. Nat Biotechnol 16:186–189

    Article  CAS  PubMed  Google Scholar 

  • Ehmer PB, Bureik M, Bernhardt R, Muller U, Hartmann RW (2002) Development of a test system for inhibitors of human aldosterone synthase (CYP11B2): screening in fission yeast and evaluation of selectivity in V79 cells. J Steroid Biochem Mol Biol 81:173–179

    Article  CAS  PubMed  Google Scholar 

  • Ewen KM, Kleser M, Bernhardt R (2010) Adrenodoxin: the archetype of vertebrate-type [2Fe-2S] cluster ferredoxins. Biochim Biophys Acta 1814:111–125

    Article  PubMed  Google Scholar 

  • Ewen KM, Ringle M, Bernhardt R (2012) Adrenodoxin–a versatile ferredoxin. IUBMB Life 64:506–512

    Article  CAS  PubMed  Google Scholar 

  • Funder JW (2007) The role of aldosterone and mineralocorticoid receptors in cardiovascular disease. Am J Cardiovasc Drugs 7:151–157

    Article  CAS  PubMed  Google Scholar 

  • Geier M, Braun A, Fladischer P, Stepniak P, Rudroff F, Hametner C, Mihovilovic MD, Glieder A (2013) Double site saturation mutagenesis of the human cytochrome P450 2D6 results in regioselective steroid hydroxylation. FEBS J 280:3094–3108

    Article  CAS  PubMed  Google Scholar 

  • Gotoh O, Fujii-Kuriyama Y (1989) Evolution, structure and gene regulation of cytochrome P-450. In: Ruckpaul K, Rein H (eds) Basis and mechanisms of regulation of cytochrome P-450. Akademie-Verlag, Berlin, pp 195–243

    Google Scholar 

  • Grinberg AV, Hannemann F, Schiffler B, Muller J, Heinemann U, Bernhardt R (2000) Adrenodoxin: structure, stability, and electron transfer properties. Proteins 40:590–612

    Article  CAS  PubMed  Google Scholar 

  • Guengerich FP (2005) Human cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism and biochemistry. Kluwer Academic/Plenum, New York, pp 377–530

    Chapter  Google Scholar 

  • Hakki T, Bernhardt R (2006) CYP17- and CYP11B-dependent steroid hydroxylases as drug development targets. Pharmacol Ther 111:27–52

    Article  CAS  PubMed  Google Scholar 

  • Hakki T, Zearo S, Dragan CA, Bureik M, Bernhardt R (2008) Coexpression of redox partners increases the hydrocortisone (cortisol) production efficiency in CYP11B1 expressing fission yeast Schizosaccharomyces pombe. J Biotechnol 133:351–359

    Article  CAS  PubMed  Google Scholar 

  • Hannemann F, Rottmann M, Schiffler B, Zapp J, Bernhardt R (2001) The loop region covering the iron-sulfur cluster in bovine adrenodoxin comprises a new interaction site for redox partners. J Biol Chem 276:1369–1375

    Article  CAS  PubMed  Google Scholar 

  • Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007) Cytochrome P450 systems–biological variations of electron transport chains. Biochim Biophys Acta 1770:330–344

    Article  CAS  PubMed  Google Scholar 

  • Hannemann F, Guyot A, Zollner A, Muller JJ, Heinemann U, Bernhardt R (2009) The dipole moment of the electron carrier adrenodoxin is not critical for redox partner interaction and electron transfer. J Inorg Biochem 103:997–1004

    Article  CAS  PubMed  Google Scholar 

  • Hobler A, Kagawa N, Hutter MC, Hartmann MF, Wudy SA, Hannemann F, Bernhardt R (2012) Human aldosterone synthase: recombinant expression in E. coli and purification enables a detailed biochemical analysis of the protein on the molecular level. J Steroid Biochem Mol Biol 132:57–65

    Article  CAS  PubMed  Google Scholar 

  • Ikushiro S, Kominami S, Takemori S (1992) Adrenal P-450scc modulates activity of P-45011 beta in liposomal and mitochondrial membranes. Implication of P-450scc in zone specificity of aldosterone biosynthesis in bovine adrenal. J Biol Chem 267:1464–1469

    CAS  PubMed  Google Scholar 

  • Kagawa N (2011) Efficient expression of human aromatase (CYP19) in E. coli. Methods Mol Biol 705(109-22):109–122

    Article  CAS  PubMed  Google Scholar 

  • Kille S, Zilly FE, Acevedo JP, Reetz MT (2011) Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution. Nat Chem 3:738–743

    Article  CAS  PubMed  Google Scholar 

  • Lisurek M, Bernhardt R (2004) Modulation of aldosterone and cortisol synthesis on the molecular level. Mol Cell Endocrinol 215:149–159

    Article  CAS  PubMed  Google Scholar 

  • Lisurek M, Kang MJ, Hartmann RW, Bernhardt R (2004) Identification of monohydroxy progesterones produced by CYP106A2 using comparative HPLC and electrospray ionisation collision-induced dissociation mass spectrometry. Biochem Biophys Res Commun 319:677–682

    Article  CAS  PubMed  Google Scholar 

  • Lisurek M, Simgen B, Antes I, Bernhardt R (2008) Theoretical and experimental evaluation of a CYP106A2 low homology model and production of mutants with changed activity and selectivity of hydroxylation. Chembiochem 9:1439–1449

    Article  CAS  PubMed  Google Scholar 

  • Megges R, Müller-Frohne M, Pfeil D, Ruckpaul K (1990) Microbial steroid hydroxylation enzymes in glucocorticoid production. In: Ruckpaul K, Rein H (eds) Molecular mechanisms of adrenal steroidogenesis and aspects of regulation and application. Akademie-Verlag, Berlin, pp 204–243

    Google Scholar 

  • Morohashi K, Fujii-Kuriyama Y, Okada Y, Sogawa K, Hirose T, Inayama S, Omura T (1984) Molecular cloning and nucleotide sequence of cDNA for mRNA of mitochondrial cytochrome P-450(SCC) of bovine adrenal cortex. Proc Natl Acad Sci USA 81:4647–4651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morohashi K, Yoshioka H, Gotoh O, Okada Y, Yamamoto K, Miyata T, Sogawa K, Fujii-Kuriyama Y, Omura T (1987) Molecular cloning and nucleotide sequence of DNA of mitochondrial cytochrome P-450(11 beta) of bovine adrenal cortex. J Biochem 102:559–568

    CAS  PubMed  Google Scholar 

  • Neunzig I, Widjaja M, Dragan CA, Peters FT, Maurer HH, Bureik M (2012) Engineering of human CYP3A enzymes by combination of activating polymorphic variants. Appl Biochem Biotechnol 168:785–796

    Article  CAS  PubMed  Google Scholar 

  • Neunzig I, Widjaja M, Peters FT, Maurer HH, Hehn A, Bourgaud F, Bureik M (2013) Coexpression of CPR from various origins enhances biotransformation activity of human CYPs in S. pombe. Appl Biochem Biotechnol 170:1751–1766

    Article  CAS  PubMed  Google Scholar 

  • Nguyen KT, Virus C, Gunnewich N, Hannemann F, Bernhardt R (2012) Changing the regioselectivity of a P450 from C15 to C11 hydroxylation of progesterone. Chembiochem 13:1161–1166

    Article  CAS  PubMed  Google Scholar 

  • Omura T (2013) Contribution of cytochrome P450 to the diversification of eukaryotic organisms. Biotechnol Appl Biochem 60:4–8

    Article  CAS  PubMed  Google Scholar 

  • Omura T, Sato R (1962) A new cytochrome in liver microsomes. J Biol Chem 237:1375–1376

    CAS  PubMed  Google Scholar 

  • Omura T, Sanders E, Estabrook RW, Cooper DY, Rosenthal O (1966) Isolation from adrenal cortex of a nonheme iron protein and a flavoprotein functional as a reduced triphosphopyridine nucleotide-cytochrome P-450 reductase. Arch Biochem Biophys 117:660–672

    Article  CAS  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature (Lond) 496:528–532

    Article  CAS  Google Scholar 

  • Petric S, Hakki T, Bernhardt R, Zigon D, Cresnar B (2010) Discovery of a steroid 11alpha-hydroxylase from Rhizopus oryzae and its biotechnological application. J Biotechnol 150:428–437

    Article  CAS  PubMed  Google Scholar 

  • Rea V, Kolkman AJ, Vottero E, Stronks EJ, Ampt KA, Honing M, Vermeulen NP, Wijmenga SS, Commandeur JN (2012) Active site substitution A82W improves the regioselectivity of steroid hydroxylation by cytochrome P450 BM3 mutants as rationalized by spin relaxation nuclear magnetic resonance studies. Biochemistry 51:750–760

    Article  CAS  PubMed  Google Scholar 

  • Roumen L, Sanders MP, Pieterse K, Hilbers PA, Plate R, Custers E, de Gooyer M, Smits JF, Beugels I, Emmen J, Ottenheijm HC, Leysen D, Hermans JJ (2007) Construction of 3D models of the CYP11B family as a tool to predict ligand binding characteristics. J Comput Aided Mol Des 21:455–471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sakaki T, Akiyoshi-Shibata M, Yabusaki Y, Manabe K, Murakami H, Ohkawa H (1991) Progesterone metabolism in recombinant yeast simultaneously expressing bovine cytochromes P450c17 (CYP17A1) and P450c21 (CYP21B1) and yeast NADPH-P450 oxidoreductase. Pharmacogenetics 1:86–93

    Article  CAS  PubMed  Google Scholar 

  • Schiffler B, Bernhardt R (2003) Bacterial (CYP101) and mitochondrial P450 systems: how comparable are they? Biochem Biophys Res Commun 312:223–228

    Article  CAS  PubMed  Google Scholar 

  • Schiffler B, Kiefer M, Wilken A, Hannemann F, Adolph HW, Bernhardt R (2001) The interaction of bovine adrenodoxin with CYP11A1 (cytochrome P450scc) and CYP11B1 (cytochrome P45011beta). Acceleration of reduction and substrate conversion by site-directed mutagenesis of adrenodoxin. J Biol Chem 276:36225–36232

    Article  CAS  PubMed  Google Scholar 

  • Schiffler B, Zollner A, Bernhardt R (2004) Stripping down the mitochondrial cholesterol hydroxylase system, a kinetics study. J Biol Chem 279:34269–34276

    Article  CAS  PubMed  Google Scholar 

  • Schiffler B, Zollner A, Bernhardt R (2011) Kinetic and optical biosensor study of adrenodoxin mutant AdxS112W displaying an enhanced interaction towards the cholesterol side chain cleavage enzyme (CYP11A1). Eur Biophys J 40:1275–1282

    Article  CAS  PubMed  Google Scholar 

  • Schmitz D, Zapp J, Bernhardt R (2012) Hydroxylation of the triterpenoid dipterocarpol with CYP106A2 from Bacillus megaterium. FEBS J 279:1663–1674

    Article  CAS  PubMed  Google Scholar 

  • Schuster I, Bernhardt R (2007) Inhibition of cytochromes p450: existing and new promising therapeutic targets. Drug Metab Rev 39:481–499

    Article  CAS  PubMed  Google Scholar 

  • Schuster I, Bernhardt R (2011) Interactions of natural polymanines with mammalian proteins. Biomol Concepts 2:79–94

    Article  CAS  Google Scholar 

  • Simgen B, Contzen J, Schwarzer R, Bernhardt R, Jung C (2000) Substrate binding to 15beta-hydroxylase (CYP106A2) probed by FT infrared spectroscopic studies of the iron ligand CO stretch vibration. Biochem Biophys Res Commun 269:737–742

    Article  CAS  PubMed  Google Scholar 

  • Sligar SG, Debrunner PG, Lipscomb JD, Namtvedt MJ, Gunsalus IC (1974) A role of the putidaredoxin COOH-terminus in P-450cam (cytochrome m) hydroxylations. Proc Natl Acad Sci USA 71:3906–3910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Szczebara FM, Chandelier C, Villeret C, Masurel A, Bourot S, Duport C, Blanchard S, Groisillier A, Testet E, Costaglioli P, Cauet G, Degryse E, Balbuena D, Winter J, Achstetter T, Spagnoli R, Pompon D, Dumas B (2003) Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 21:143–149

    Article  CAS  PubMed  Google Scholar 

  • Tong WY, Dong X (2009) Microbial biotransformation: recent developments on steroid drugs. Recent Pat Biotechnol 3:141–153

    Article  CAS  PubMed  Google Scholar 

  • Uhlmann H, Kraft R, Bernhardt R (1994) C-terminal region of adrenodoxin affects its structural integrity and determines differences in its electron transfer function to cytochrome P-450. J Biol Chem 269:22557–22564

    CAS  PubMed  Google Scholar 

  • Venkataraman H, Beer SB, Bergen LA, Essen N, Geerke DP, Vermeulen NP, Commandeur JN (2012) A single active site mutation inverts stereoselectivity of 16-hydroxylation of testosterone catalyzed by engineered cytochrome P450 BM3. Chembiochem 13:520–523

    Article  CAS  PubMed  Google Scholar 

  • Vickery LE (1997) Molecular recognition and electron transfer in mitochondrial steroid hydroxylase systems. Steroids 62:124–127

    Article  CAS  PubMed  Google Scholar 

  • Virus C, Lisurek M, Simgen B, Hannemann F, Bernhardt R (2006) Function and engineering of the 15beta-hydroxylase CYP106A2. Biochem Soc Trans 34:1215–1218

    Article  CAS  PubMed  Google Scholar 

  • Zehentgruber D, Hannemann F, Bleif S, Bernhardt R, Lutz S (2010) Towards preparative scale steroid hydroxylation with cytochrome P450 monooxygenase CYP106A2. Chembiochem 11:713–721

    Article  CAS  PubMed  Google Scholar 

  • Zollner A, Hannemann F, Lisurek M, Bernhardt R (2002) Deletions in the loop surrounding the iron–sulfur cluster of adrenodoxin severely affect the interactions with its native redox partners adrenodoxin reductase and cytochrome P450(scc) (CYP11A1). J Inorg Biochem 91:644–654

    Article  CAS  PubMed  Google Scholar 

  • Zollner A, Pasquinelli MA, Bernhardt R, Beratan DN (2007) Protein phosphorylation and intermolecular electron transfer: a joint experimental and computational study of a hormone biosynthesis pathway. J Am Chem Soc 129:4206–4216

    Article  PubMed Central  PubMed  Google Scholar 

  • Zollner A, Kagawa N, Waterman MR, Nonaka Y, Takio K, Shiro Y, Hannemann F, Bernhardt R (2008) Purification and functional characterization of human 11beta hydroxylase expressed in Escherichia coli. FEBS J 275:799–810

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Antje Eiden-Plach for technical support upon finalizing the manuscript, and Martin Litzenburger and Jens Neunzig for help with the figures, as well as Dr. Matthias Bureik, Dr. Frank Hannemann, Simon Janocha, and Dr. Daniela Schmitz for critical reading of the manuscript. The support of the EC INTERREG program to R.B. is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Bernhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Bernhardt, R. (2014). Mammalian and Bacterial Cytochromes P450 Involved in Steroid Hydroxylation : Regulation of Catalysis and Selectivity, and Potential Applications. In: Yamazaki, H. (eds) Fifty Years of Cytochrome P450 Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54992-5_8

Download citation

Publish with us

Policies and ethics