Skip to main content

Control of Xeno/Endobiotics-Metabolizing Cytochrome P450s by MicroRNAs

  • Chapter
  • First Online:

Abstract

Human cytochrome P450s (P450s, CYPs) catalyze the metabolism of xenobiotics such as drugs, environmental chemicals, and pro-carcinogens as well as endobiotics such as steroids and bile acids. To understand the reasons for inter- and intraindividual variability of drug response and adverse reaction as well as xenobiotics-related toxicity, the mechanisms of transcriptional regulation and the genetic polymorphisms of P450s have been well studied. Recently, it was discerned that microRNAs (miRNAs), endogenous short noncoding RNAs 18–24 nucleotides in length, are involved in the posttranscriptional regulation of P450s through translational repression or mRNA degradation. It became clear that miRNAs regulate P450s expression not only by a direct mechanism but also by indirect mechanisms through the regulation of transcriptional factors or modulators of enzyme activities. The miRNA-dependent regulation of P450s confers variability in detoxification of drugs and metabolic activation of environmental chemicals. In addition, it plays roles in the homeostasis of endobiotics and cancer development or progression. Polymorphisms are present not only in the mRNA but also in miRNA sequences. The miRNA-related polymorphisms may cause gain- or loss of function, resulting in change of targets of mRNA expression. The miRNA-related polymorphisms join the pharmacogenetics. Further elucidation of the role of miRNAs in drug metabolism and pharmacokinetics and drug toxicology may offer new clues for pharmacotherapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams BD, Furneaux H, White BA (2007) The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-α (ERα) and represses ERα messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol 21:1132–1147

    Article  CAS  PubMed  Google Scholar 

  • Alexiou P, Maragkakis M, Papadopoulos GL, Reczko M, Hatzigeorgiou AG (2009) Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics 25:3049–3055

    Article  CAS  PubMed  Google Scholar 

  • Carrer M, Liu N, Grueter CE, Williams AH, Frisard MI, Hulver MW, Bassel-Duby R, Olson EN (2012) Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*. Proc Natl Acad Sci USA 109:15330–15335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chekulaeva M, Filipowicz W (2009) Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 21:452–460

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Chen C, Yang S, Gong W, Wang Y, Cianflone K, Tang J, Wang DW (2012) Let-7b inhibits human cancer phenotype by targeting cytochrome P450 epoxygenase 2J2. PLoS One 7:e39197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng X, Ku CH, Siow RC (2013) Regulation of the Nrf2 antioxidant pathway by microRNAs: new players in micromanaging redox homeostasis. Free Radic Biol Med 64:4–11

    Article  CAS  PubMed  Google Scholar 

  • Choi YM, An S, Lee EM, Kim K, Choi SJ, Kim JS, Jang HH, An IS, Bae S (2012) CYP1A1 is a target of miR-892a-mediated post-transcriptional repression. Int J Oncol 41:331–336

    CAS  PubMed  Google Scholar 

  • Curtis HJ, Sibley CR, Wood MJ (2012) Mirtrons, an emerging class of atypical miRNA. Wiley Interdiscipl Rev RNA 3:617–632

    Article  CAS  Google Scholar 

  • Dong X, Liu H, Chen F, Li D, Zhao Y (2014) MiR-214 promotes the alcohol-induced oxidative stress via down-regulation of glutathione reductase and cytochrome P450 oxidoreductase in liver cells. Alcohol Clin Exp Res 38(1):68–77

    Google Scholar 

  • Duursma AM, Kedde M, Schrier M, le Sage C, Agami R (2008) miR-148 targets human DNMT3b protein coding region. RNA 14:872–877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eades G, Yang M, Yao Y, Zhang Y, Zhou Q (2011) miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J Biol Chem 286:40725–40733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874

    Article  CAS  PubMed  Google Scholar 

  • Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  CAS  PubMed  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(Database Issue):D140–D144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang JG, Chen CL, Card JW, Yang S, Chen JX, Fu XN, Ning YG, Xiao X, Zeldin DC, Wang DW (2005) Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res 65:4707–4715

    Article  CAS  PubMed  Google Scholar 

  • Kalscheuer S, Zhang X, Zeng Y, Upadhyaya P (2008) Differential expression of microRNAs in early-stage neoplastic transformation in the lungs of F344 rats chronically treated with the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis (Oxf) 29:2394–2399

    Article  CAS  Google Scholar 

  • Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, Dani C, Amri EZ, Scheideler M (2009) microRNA miR-27b impairs human adipocyte differentiation and targets PPARγ. Biochem Biophys Res Commun 390:247–251

    Article  CAS  PubMed  Google Scholar 

  • Kida K, Nakajima M, Mohri T, Oda Y, Takagi S, Fukami T, Yokoi T (2011) PPARα is regulated by miR-21 and miR-27b in human liver. Pharm Res 28:2467–2476

    Article  CAS  PubMed  Google Scholar 

  • Kim VN, Nam JW (2006) Genomics of microRNA. Trends Genet 22:165–173

    Article  CAS  PubMed  Google Scholar 

  • Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11:441–450

    Article  CAS  PubMed  Google Scholar 

  • Komagata S, Nakajima M, Takagi S, Mohri T, Taniya T, Yokoi T (2009) Human CYP24 catalyzing the inactivation of calcitriol is post-transcriptionally regulated by miR-125b. Mol Pharmacol 76:702–709

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Luo Y, Tudela C, Alexander JM, Mendelson CR (2013) The c-Myc-regulated microRNA-17-92 (miR-17-92) and miR-106a-363 clusters target hCYP19A1 and hGCM1 to inhibit human trophoblast differentiation. Mol Cell Biol 33:1782–1796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee EK, Lee MJ, Abdelmohsen K, Kim W, Kim MM, Srikantan S, Martindale JL, Hutchison ER, Kim HH, Marasa BS, Selimyan R, Egan JM, Smith SR, Fried SK, Gorospe M (2010) miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor γ expression. Mol Cell Biol 31:626–638

    Article  PubMed Central  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  • Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z (2009) A role of miR-27 in the regulation of adipogenesis. FEBS J 276:2348–2358

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q (2008) An analysis of human microRNA and disease associations. PLoS One 3:e3420

    Article  PubMed Central  PubMed  Google Scholar 

  • Mohri T, Nakajima M, Takagi S, Komagata S, Yokoi T (2009) MicroRNA regulates human vitamin D receptor. Int J Cancer 125:1328–1333

    Article  CAS  PubMed  Google Scholar 

  • Mohri T, Nakajima M, Fukami T, Takamiya M, Aoki Y, Yokoi T (2010) Human CYP2E1 is regulated by miR-378. Biochem Pharmacol 79:1045–1052

    Article  CAS  PubMed  Google Scholar 

  • Oda Y, Nakajima M, Mohri T, Takamiya M, Aoki Y, Fukami T, Yokoi T (2012) Aryl hydrocarbon receptor nuclear translocator in human liver is regulated by miR-24. Toxicol Appl Pharmacol 260:222–231

    Article  CAS  PubMed  Google Scholar 

  • Pan Y-Z, Gao W, Yu A-M (2009) MicroRNAs regulate CYP3A4 expression via direct and indirect targeting. Drug Metab Dispos 37:2112–2117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Panda H, Chuang TD, Luo X, Chegini N (2012) Endometrial miR-181a and miR-98 expression is altered during transition from normal into cancerous state and target PGR, PGRMC1, CYP19A1, DDX3X, and TIMP3. J Clin Endocrinol Metab 97:E1316–E1326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramamoorthy A, Skaar TC (2011) In silico identification of microRNAs predicted to regulate the drug metabolizing cytochrome P450 genes. Drug Metab Lett 5:126–131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramamoorthy A, Li L, Gaedigk A, Bradford LD, Benson EA, Flockhart DA, Skaar TC (2012) In silico and in vitro identification of microRNAs that regulate hepatic nuclear factor 4α expression. Drug Metab Dispos 40:726–733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sethupathy P, Collins FS (2008) MicroRNA target site polymorphisms and human disease. Trends Genet 24:489–497

    Article  CAS  PubMed  Google Scholar 

  • Shibahara Y, Miki Y, Onodera Y, Hata S, Chan MS, Yiu CC, Loo TY, Nakamura Y, Akahira J, Ishida T, Abe K, Hirakawa H, Chow LW, Suzuki T, Ouchi N, Sasano H (2012) Aromatase inhibitor treatment of breast cancer cells increases the expression of let-7f, a microRNA targeting CYP19A1. J Pathol 227:357–366

    Article  CAS  PubMed  Google Scholar 

  • Shukla U, Tumma N, Gratsch T, Dombkowski A, Novak RF (2013) Insights into insulin-mediated regulation of CYP2E1: miR-132/-212 targeting of CYP2E1 and role of phosphatidylinositol 3-kinase, Akt (protein kinase B), mammalian target of rapamycin signaling in regulating miR-132/-212 and miR-122/-181a expression in primary cultured rat hepatocytes. Drug Metab Dispos 41:1769–1777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh B, Ronghe AM, Chatterjee A, Bhat NK, Bhat HK (2013) MicroRNA-93 regulates NRF2 expression and is associated with breast carcinogenesis. Carcinogenesis (Oxf) 34:1165–1172

    Article  CAS  Google Scholar 

  • Takagi S, Nakajima M, Mohri T, Yokoi T (2008) Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4. J Biol Chem 283:9674–9680

    Article  CAS  PubMed  Google Scholar 

  • Takagi S, Nakajima M, Kida K, Yamaura Y, Fukami T, Yokoi T (2010) MicroRNAs regulate human hepatocyte nuclear factor 4α, modulating the expression of metabolic enzymes and cell cycle. J Biol Chem 285:4415–4422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi K, Oda Y, Toyoda Y, Fukami T, Yokoi T, Nakajima M (2014) Regulation of cytochrome b5 expression by miR-223 in human liver: effects on cytochrome P450 activities. Pharm Res 31:780–794

    Google Scholar 

  • Tsuchiya Y, Nakajima M, Kyo S, Kanaya T, Inoue M, Yokoi T (2004) Human CYP1B1 is regulated by estradiol via estrogen receptor. Cancer Res 64:3119–3125

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya Y, Nakajima M, Takagi S, Taniya T, Yokoi T (2006) MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res 66:9090–9098

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Burke PA (2013) The role of microRNAs in hepatocyte nuclear factor-4alpha expression and transactivation. Biochim Biophys Acta 1829:436–442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wei R, Yang F, Urban TJ, Li L, Chalasani N, Flockhart DA, Liu W (2012) Impact of the interaction between 3′-UTR SNPs and microRNA on the expression of human xenobiotic metabolism enzyme and transporter genes. Front Genet 3:248

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xie X, Miao L, Yao J, Feng C, Li C, Gao M, Liu M, Gong L, Wang Y, Qi X, Ren J (2013) Role of multiple microRNAs in the sexually dimorphic expression of Cyp2b9 in mouse liver. Drug Metab Dispos 41:1732–1737

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Yu D, Wei N, Fu H, Cai T, Huang Y, Wu C, Zheng X, Du Q, Lin D, Liang Z (2010) An estrogen receptor α suppressor, microRNA-22, is downregulated in estrogen receptor α-positive human breast cancer cell lines and clinical samples. FEBS J 277:1684–1694

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Yao Y, Eades G, Zhang Y, Zhou Q (2011) MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism. Breast Cancer Res Treat 129:983–991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang SY, Surapureddi S, Coulter S, Ferguson SS, Goldstein JA (2012) Human CYP2C8 is post-transcriptionally regulated by microRNAs 103 and 107 in human liver. Mol Pharmacol 82:529–540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao JJ, Lin J, Yang H, Kong W, He L, Ma X, Coppola D, Cheng JQ (2008) MicroRNA-221/222 negatively regulates estrogen receptor α and is associated with tamoxifen resistance in breast cancer. J Biol Chem 283:31079–31086

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miki Nakajima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Nakajima, M. (2014). Control of Xeno/Endobiotics-Metabolizing Cytochrome P450s by MicroRNAs. In: Yamazaki, H. (eds) Fifty Years of Cytochrome P450 Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54992-5_19

Download citation

Publish with us

Policies and ethics