Skip to main content

Intraoperative Graft Assessment OPCAB Made in Japan

  • Chapter
Off-Pump Coronary Artery Bypass
  • 943 Accesses

Abstract

Intraoperative graft evaluation is important because early graft failure is not rare. Several investigators have reported that graft failure at one year after surgery is approximately 20 % and immediate graft failure occurs in 3.2 % of the grafts (7.6 % of patients) during surgery. These early failures are often associated with technical issues that could be solved promptly if adequately diagnosed intraoperatively. Transit-time flow measurement (TTFM) and intraoperative fluorescence imaging (IFI) are currently most commonly used systems for intraoperative graft assessment. Both systems will reliably detect occluded grafts but cannot consistently detect more minor, nonocclusive abnormalities. The strengths of the IFI system are that it is a safe, simple, and repeatable technique, but its limitations are that it only provides a semiquantitative estimate of graft flow and does not show accurate anastomotic quality. On the other hand, TTFM provides more objective measurements of graft flow but is more likely to both underestimate and overestimate the need for graft revision. High-frequency epicardial ultrasound effectively helps the surgeons to cope with intraoperative challenges: (1) identify the location of target coronary arteries, (2) select the optimal anastomotic sites, and (3) assess the quality of constructed anastomoses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poirier NC, Carrier M, Lesperance J et al (1999) Quantitative angiographic assessment of coronary anastomoses performed without cardiopulmonary bypass. J Thorac Cardiovasc Surg 117:292–297

    Article  CAS  PubMed  Google Scholar 

  2. Nathoe HM, van Dijk D, Jansen EW et al (2003) A comparison of on-pump and off-pump coronary bypass surgery in low-risk patients. N Engl J Med 348:394–402

    Article  PubMed  Google Scholar 

  3. Widimsky P, Straka Z, Stros P et al (2004) One-year coronary bypass graft patency: a randomized comparison between off-pump and on-pump surgery angiographic results of the PRAGUE-4 trial. Circulation 110:3418–3423

    Article  PubMed  Google Scholar 

  4. Lingaas PS, Hol PK, Lundblad R et al (2004) Clinical and angiographic outcome of coronary surgery with and without cardiopulmonary bypass: a prospective randomized trial. Heart Surg Forum 7:37–41

    PubMed  Google Scholar 

  5. Khan NE, DeSouza A, Mister R et al (2004) A randomized comparison of off-pump and on-pump multivessel coronary artery bypass surgery. N Engl J Med 350:21–28

    Article  CAS  PubMed  Google Scholar 

  6. Puskas JD, Williams WH, Mahoney EM et al (2004) Off-pump vs conventional coronary artery bypass grafting: early and 1-year graft patency, cost, and quality-of-life outcomes: a randomized trial. JAMA 291:1841–1849

    Article  CAS  PubMed  Google Scholar 

  7. Alexander JH, Hafley G, Harrington RA et al (2005) Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: a randomized controlled trial. JAMA 294:2446–2454

    Article  PubMed  Google Scholar 

  8. Yusuf S, Zucker D, Peduzzi P et al (1994) Effect of coronary artery bypass graft surgery on survival: overview of 10-year results from randomised trials by the Coronary Artery Bypass Graft Surgery Trialists Collaboration. Lancet 344:563–570

    Article  CAS  PubMed  Google Scholar 

  9. D’Ancona G, Karamanoukian HL, Ricci M et al (2000) Graft revision after transit time flow measurement in off-pump coronary artery bypass grafting. Eur J Cardiothorac Surg 17:287–293

    Article  PubMed  Google Scholar 

  10. Magee MJ, Alexander JH, Hafley G, Ferguson TB Jr, Gibson CM, Harrington RA, Peterson ED, Califf RM, Kouchoukos NT, Herbert MA, Mack MJ, PREVENT IV Investigators (2008) Coronary artery bypass graft failure after on-pump and off-pump coronary artery bypass: findings from PREVENT IV. Ann Thorac Surg 85:494–499

    Article  PubMed  Google Scholar 

  11. Lytle B, Blackstone E, Loop F et al (1999) Two internal thoracic artery grafts are better than one. J Thorac Cardiovasc Surg 117:855–872

    Article  CAS  PubMed  Google Scholar 

  12. Taggart DP, D’Amico R, Altman DG (2001) Effect of arterial revascularisation on survival: a systematic review of studies comparing bilateral and single internal mammary arteries. Lancet 358:870–875

    Article  CAS  PubMed  Google Scholar 

  13. Abu-Omar Y, Taggart DP (2002) Off-pump coronary artery bypass grafting. Lancet 360:327–330

    Article  PubMed  Google Scholar 

  14. Parolari A, Alamanni F, Polvani G et al (2005) Meta-analysis of randomized trials comparing off-pump with on-pump coronary artery bypass graft patency. Ann Thorac Surg 80:2121–2125

    Article  PubMed  Google Scholar 

  15. Shroyer AL, Grover FL, Hattler B, Collins JF, McDonald GO, Kozora E, Lucke JC, Baltz JH, Novitzky D, Veterans Affairs Randomized On/Off Bypass (ROOBY) Study Group (2009) On-pump versus off-pump coronary-artery bypass surgery. N Engl J Med 361:1827–1837

    Article  CAS  PubMed  Google Scholar 

  16. Hol PK, Lingaas PS, Lundblad R et al (2004) Intraoperative angiography leads to graft revision in coronary artery bypass surgery. Ann Thorac Surg 78:502–505

    Article  PubMed  Google Scholar 

  17. Falk V, Walther T, Philippi A et al (1995) Thermal coronary angiography for intraoperative patency control of arterial and saphenous vein coronary artery bypass grafts: results in 370 patients. J Card Surg 10:147–160

    Article  CAS  PubMed  Google Scholar 

  18. Canver CC, Dame NA (1994) Ultrasonic assessment of internal thoracic artery graft flow in the revascularized heart. Ann Thorac Surg 58:135–138

    Article  CAS  PubMed  Google Scholar 

  19. Taggart DP, Choudhary B, Anastasiadis K et al (2003) Preliminary experience with a novel intraoperative fluorescence imaging technique to evaluate the patency of bypass grafts in total arterial revascularization. Ann Thorac Surg 75:870–873

    Article  PubMed  Google Scholar 

  20. D’Ancona G, Karamanoukian HL, Ricci M et al (2000) Graft revision after transit time flow measurement in off-pump coronary artery bypass grafting. Eur J Cardiothorac Surg 17:287–293

    Article  PubMed  Google Scholar 

  21. Kim KB, Kang CH, Lim C (2005) Prediction of graft flow impairment by intraoperative transit time flow measurement in off-pump coronary artery bypass using arterial grafts. Ann Thorac Surg 80:594–598

    Article  PubMed  Google Scholar 

  22. Balacumaraswami L, Taggart DP (2007) Intraoperative imaging techniques to assess coronary artery bypass graft patency. Ann Thorac Surg 83:2251–2257

    Article  PubMed  Google Scholar 

  23. Kim KB, Kang CH, Lim C (2005) Prediction of graft flow impairment by intraoperative transit time flow measurement in off-pump coronary artery bypass using arterial grafts. Ann Thorac Surg 80:594–598

    Article  PubMed  Google Scholar 

  24. Di Giammarco G, Pano M, Cirmeni S et al (2006) Predictive value of intraoperative transit-time flow measurement for short-term graft patency in coronary surgery. J Thorac Cardiovasc Surg 132:468–474

    Article  PubMed  Google Scholar 

  25. Tokuda Y, Song MH, Ueda Y et al (2007) Predicting early coronary artery bypass graft failure by intraoperative transit time flow measurement. Ann Thorac Surg 84:1928–1933

    Article  PubMed  Google Scholar 

  26. Hirotani T, Kameda T, Shirota S et al (2001) An evaluation of the intraoperative transit time measurements of coronary bypass flow. Eur J Cardiothorac Surg 19:848–852

    Article  CAS  PubMed  Google Scholar 

  27. Hol PK, Fosse E, Mork BE et al (2001) Graft control by transit time flow measurement and intraoperative angiography in coronary artery bypass surgery. Heart Surg Forum 4:254–257

    CAS  PubMed  Google Scholar 

  28. Speich R, Saesseli B, Hoffmann U et al (1988) Anaphylactoid reaction after indocyanine-green administration. Ann Intern Med 109:345–346

    Article  CAS  PubMed  Google Scholar 

  29. Yasuda T, Watanbe G, Tomita S (2005) Transaortic injection technique in fluorescence imaging: novel intraoperative assessment of anastomosis in off-pump coronary artery bypass grafting. J Thorac Cardiovasc Surg 130:560–561

    Article  PubMed  Google Scholar 

  30. Rubens FD, Ruel M, Fremes SE (2002) A new and simplified method for coronary and graft imaging during CABG. Heart Surg Forum 5:141–144

    PubMed  Google Scholar 

  31. Reuthebuch O, Haussler A, Genoni M et al (2004) Novadaq SPY: intraoperative quality assessment in off-pump coronary artery bypass grafting. Chest 125:418–424

    Article  PubMed  Google Scholar 

  32. Balacumaraswami L, Abu-Omar Y, Anastasiadis K et al (2004) Does off-pump total arterial grafting increase the incidence of intraoperative graft failure? J Thorac Cardiovasc Surg 128:238–244

    Article  PubMed  Google Scholar 

  33. Takahashi M, Ishikawa T, Higashidani K et al (2004) SPYTM: an innovative intra-operative imaging system to evaluate graft patency during off-pump coronary artery bypass grafting. Interact CardioVasc Thorac Surg 3:479–483

    Article  PubMed  Google Scholar 

  34. Desai ND, Miwa S, Kodama D et al (2005) Improving the quality of coronary bypass surgery with intraoperative angiography: validation of a new technique. J Am Coll Cardiol 46:1521–1525

    Article  PubMed  Google Scholar 

  35. Handa T, Katare RG, Nishimori H, Wariishi S, Fukutomi T, Yamamoto M, Sasaguri S, Sato T (2010) New device for intraoperative graft assessment: HyperEye charge-coupled device camera system. Gen Thorac Cardiovasc Surg 58:68–77

    Article  PubMed  Google Scholar 

  36. Handa T, Katare RG, Sasaguri S, Sato T (2009) Preliminary experience for the evaluation of the intraoperative graft patency with real color charge-coupled device camera system: an advanced device for simultaneous capturing of color and near-infrared images during coronary artery bypass graft. Interact Cardiovasc Thorac Surg 9:150–154

    Article  PubMed  Google Scholar 

  37. Kuroyanagi S, Asai T, Suzuki T (2012) Intraoperative fluorescence imaging after transit-time flow measurement during coronary artery bypass grafting. Innov (Phila) 7:435–440

    Google Scholar 

  38. Balacumaraswami L, Abu-Omar Y, Choudhary B et al (2005) A comparison of transit-time flowmetry and intraoperative fluorescence imaging for assessing coronary artery bypass graft patency. J Thorac Cardiovasc Surg 130:315–320

    Article  PubMed  Google Scholar 

  39. Desai ND, Miwa S, Kodama D et al (2006) A randomized comparison of intraoperative indocyanine green angiography and transit-time flow measurement to detect technical errors in coronary bypass grafts. J Thorac Cardiovasc Surg 132:585–594

    Article  PubMed  Google Scholar 

  40. Isringhaus H (1990) Epicardial coronary artery imaging. Echocardiography 7:253–259

    Article  CAS  PubMed  Google Scholar 

  41. Hayakawa M, Asai T, Kinoshita T, Suzuki T, Shiraishi S (2013) Target vessel detection by epicardial ultrasound in off-pump coronary bypass surgery. Innov (Phila) 8:249–252

    Article  Google Scholar 

  42. Sahn DJ, Barratt-Boyes BG, Graham K, Kerr A, Roche A, Hill D, Brandt PWT, Copeland JG, Mammana R, Temkin LP, Glenn W (1982) Ultrasonic imaging of the coronary arteries in open-chest humans: evaluation of coronary atherosclerotic lesions during cardiac surgery. Circulation 66:1034–1044

    Article  CAS  PubMed  Google Scholar 

  43. Eikelaar JHR, Meijer R, van Boven WJ, Klein P, Gründeman PF, Borst C (2002) Epicardial 10-MHz ultrasound in off-pump coronary bypass surgery: a clinical feasibility study using a minitransducer. J Thorac Cardiovasc Surg 124:785–789

    Article  PubMed  Google Scholar 

  44. Budde RPJ, Bakker PFA, Meijer R, Borst C, Gründeman PF (2006) Ultrasound mini-transducer with malleable handle for coronary artery surgery. Ann Thorac Surg 81:322–326

    Article  PubMed  Google Scholar 

  45. Suematsu Y, Takamoto S, Ohtsuka T (2001) Intraoperative echocardiographic imaging of coronary arteries and graft anastomoses during coronary artery bypass grafting without cardiopulmonary bypass. J Thorac Cardiovasc Surg 122:1147–1154

    Google Scholar 

  46. Stein H, Smith JM, Robinson JR, Katz MR (2006) Target vessel detection and coronary anastomosis assessment by intraoperative 12-MHz ultrasound. Ann Thorac Surg 82:1078–1084

    Google Scholar 

  47. Hiratzka LF, McPherson DD, Lamberth WC Jr, Brandt B 3rd, Armstrong ML, Schröder E, Hunt M, Kieso R, Megan MD, Tompkins OK, Marcus ML, Kerber RE (1986) Intraoperative evaluation of coronary artery bypass graft anastomoses with high frequency epicardial echocardiography: experimental validation and initial patient studies. Circulation 73:1199–1205

    Article  CAS  PubMed  Google Scholar 

  48. Hiratzka LF, McPherson DD, Brandt B 3rd, Lamberth WC Jr, Sirna S, Marcus ML, Kerber RE (1987) The role of intraoperative high-frequency epicardial echocardiography during coronary artery revascularization. Circulation 76:V33–V38

    CAS  PubMed  Google Scholar 

  49. Oda K, Hirose K, Nishimori H, Sato K, Yamashiro T, Ogoshi S (1998) Assessment of internal thoracic artery graft with intraoperative color Doppler ultrasonography. Ann Thorac Surg 66:79–81

    Article  CAS  PubMed  Google Scholar 

  50. Ishikura F, Matsuwaka R, Sakakibara T, Sakata Y, Hirayama A, Kodama K (1998) Clinical application of power Doppler imaging to visualize coronary arteries in human beings. J Am Soc Echocardiogr 11:219–227

    Article  CAS  PubMed  Google Scholar 

  51. Arruda AM, Dearani JA, Click RL, Ishikura F, Seward JB (1999) Intraoperative application of power Doppler imaging: visualization of myocardial perfusion after anastomosis of left internal thoracic artery to left anterior descending coronary artery. J Am Soc Echocardiogr 12:650–654

    Article  CAS  PubMed  Google Scholar 

  52. Suematsu Y, Ohtsuka T, Miyairi T, Motomura N, Takamoto S (2002) Ultrasonic evaluation of graft anastomoses during coronary artery bypass grafting without cardiopulmonary bypass. Ann Thorac Surg 74:273–275

    Article  PubMed  Google Scholar 

  53. Haaverstad R, Vitale N, Williams RI, Fraser AG (2002) Epicardial colour-Doppler scanning of coronary artery stenoses and graft anastomoses. Scand Cardiovasc J 36:95–99

    Article  PubMed  Google Scholar 

  54. Haaverstad R, Vitale N, Tjomsland O, Tromsdal A, Torp H, Samstad SO (2002) Intraoperative color Doppler ultrasound assessment of LIMA-to-LAD anastomoses in off-pump coronary artery bypass grafting. Ann Thorac Surg 74:S1390–S1394

    Article  PubMed  Google Scholar 

  55. Miwa S, Nishina T, Ueyama K, Kameyama T, Ikeda T, Nishimura K, Komeda M (2004) Visualization of intramuscular left anterior descending coronary arteries during off-pump bypass surgery. Ann Thorac Surg 77:344–346

    Article  PubMed  Google Scholar 

  56. Hol PK, Andersen K, Skulstad H, Halvorsen PS, Lingaas PS, Andersen R, Bergsland J, Fosse E (2007) Epicardial ultrasonography: a potential method for intraoperative quality assessment of coronary bypass anastomoses? Ann Thorac Surg 84:801–807

    Article  PubMed  Google Scholar 

  57. Schiller W, Rudorf H, Tiemann K, Probst C, Mellert F, Welz A (2007) Detection of coronary arteries and evaluation of anastomoses with a commercially available 15-MHz, broadband, linear array transducer. Heart Surg Forum 10:E387–E391

    Article  PubMed  Google Scholar 

  58. Suematsu Y, Takamoto S, Ohtsuka T, Motomura N, Miyairi T (2002) Power Doppler imaging for detection of harvest injury of internal mammary artery. Asian Cardiovasc Thorac Ann 10:89–91

    Article  PubMed  Google Scholar 

  59. Budde RPJ, Meijer R, Dessing TC, Borst C, Gründeman PF (2005) Detection of construction errors in ex-vivo coronary artery anastomoses by 13 MHz epicardial ultrasonography. J Thorac Cardiovasc Surg 129:1078–1083

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Kinoshita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Kinoshita, T., Asai, T. (2016). Intraoperative Graft Assessment OPCAB Made in Japan. In: Asai, T., Ochi, M., Yokoyama, H. (eds) Off-Pump Coronary Artery Bypass. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54986-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54986-4_18

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54985-7

  • Online ISBN: 978-4-431-54986-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics