Segmentation Study of Foreign Exchange Market

  • Aki-Hiro Sato


This chapter explains a recursive segmentation procedure under normal distribution assumptions. The Akaike information criterion between independently identically distributed Gaussian samples and two successive segments drawn from different Gaussian distributions is used as a discriminator to segment time series. The Jackknife method is employed in order to evaluate a statistical significance level. This chapter shows univariate and multivariate cases. The proposed method is performed for artificial time series consisting of two segments with different statistics. Furthermore, log-return time series of currency exchange rates for 30 currency pairs for the period from January 4, 2001 to December 30, 2011 are divided into 11 segments with the proposed method. It is confirmed that some segment corresponds to historical events recorded as critical situations.


Multivariate Gaussian Distribution Multivariate Time Series Segmentation Procedure Financial Time Series Foreign Exchange Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to express his sincere gratitude to Prof. Zdzislaw Burda of Jagiellonian University for constructive comments and stimulating discussions.


  1. 1.
    Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Caski, F. (eds.) Proceeding of the Second International Symposium on Information Theory, pp. 267–281. Akademiai Kiado, Budapest (1973)Google Scholar
  2. 2.
    Alexandersson, H.: A homogeneity test applied to precipitation data. J. Climatol. 6, 661–675 (1986)CrossRefGoogle Scholar
  3. 3.
    Alexandersson, H., Moberg, A.: Homogenization of Swedish temperature data. Part I—homogeneity test for linear trends. Int. J. Climatol. 17, 25–34 (1997)CrossRefGoogle Scholar
  4. 4.
    Basseville, M., Nikiforov, I.V.: Detection of Abrupt Changes—Theory and Application. Prentice-Hall, Upper Saddle Revier (1993)Google Scholar
  5. 5.
    Bouchaud, J.P., Potters, M.: Theory of Financial Risks and Derivative Pricing- From Statistical Physics to Risk Management. Cambridge University Press, Cambridge (2003)CrossRefMATHGoogle Scholar
  6. 6.
    Brodsky, B.E., Darkhovsky, B.S.: Nonparametric Methods in Change-Point Problems. Kluwer Academic Publishers, Dordrecht (1993)CrossRefGoogle Scholar
  7. 7.
    Burda, Z., Görlich, A., Jarosz, A., Jurkiewicz, J.: Signal and Noise in Correlation Matrix. Physica A 343, 295–310 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, J., Gupta, A.K.: Parametric Statistical Change Point Analysis- With Applications to Genetics. Medicine and Finance. Birkhäuser, Boston (2000)CrossRefGoogle Scholar
  9. 9.
    Chen, J., Gupta, A.K.: Statistical inference of covariance change points in Gaussian model. Statistics 38, 17–28 (2004)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Cheong, S.A., Fornia, R.P., Lee, G.H.T., Kok, J.L., Yim, W.S., Xu, D.Y., Zhang, Y.: The Japanese economy in crises—a time series segmentation study. Econ. E-J., 2012–5 (2012) URL
  11. 11.
    Cho, H., Fryzlewicz, P.: Multiscale interpretation of taut string estimation and its connection to unbalanced Haar wavelets. Stat. Comput. 21, 671–681 (2011)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chow, G.C.: Tests of equality between sets of coefficients in two linear regressions. Econometrica 28, 591–605 (1960)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Csörgö, M., Horváth, L.: Limit Theorems in Change-Point Analysis. Wiley, New York (1997)MATHGoogle Scholar
  14. 14.
    Ducré-Robitaille, J.F., Vincent, L.A., Boulet, G.: Comparison of techniques for detection of discontinuities in temperature series. Int. J. Climatol. 23, 1087–1101 (2003)CrossRefGoogle Scholar
  15. 15.
    Easterling, D.R., Peterson, T.C.: A new method for detecting undocumented discontinuities in climatological time series. Int. J. Climatol. 15, 369–377 (1995)CrossRefGoogle Scholar
  16. 16.
    Giraitis, L., Leipus, R.: Testing and estimating in the change-point problem of the spectral function. Lith. Math. J. 32, 15–29 (1992)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Giraitis, L., Leipus, R.: Functional CLT for nonparametric estimates of the spectrum and change-point problem for a spectral function. Lith. Math. J. 30, 302–322 (1990)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Goldfeld, S.M., Quandt, R.E.: A Markov model for switching regressions. J. Econometrics 1, 3–15 (1973)CrossRefMATHGoogle Scholar
  19. 19.
    Gopikrishnan, P., Plerou, V., Liu, Y., Amaral, L.A.N., Gabaix, X., Stanley, H.E.: Scaling and correlation in financial time series. Phys. A 287, 362–373 (2000)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Gullett, D.W., Vincent, L., Sajecki, P.J.F.: Testing homogeneity in temperature series at Canadian climate stations. CCC report 90–4, Climate Research Branch, Meteorological Service of Canada, Ontario, Canada (1990).Google Scholar
  21. 21.
    Hamilton, J.D.: Regime-switching models (2005) URL jhamilto/palgrav1.pdf.Google Scholar
  22. 22.
    Hansen, B.E.: Testing for parameter instability in linear models. J. Policy Model. 14, 517–533 (1992)CrossRefGoogle Scholar
  23. 23.
    Hawkins, D.M.: Testing a sequence of observations for a shift in location. J. Am. Stat. Assoc. 72, 180–186 (1977)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Hawkins, D.M.: Fitting multiple change-point models to data. Comput. Stat. Data Anal. 37, 323–341 (2001)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Karl, T.R., Williams, C.N. Jr: An approach to adjusting climatological time series for discontinuous inhomogeneities. J. Clim. Appl. Meteorol. 26, 1744–1763 (1987)Google Scholar
  26. 26.
    Kawahara, Y., Sugiyama, M.: Sequential change-point detection basedon direct density-ratio estimation. Stat. Anal. Data Min. 5, 114–127 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kim, C.J., Piger, J.M., Startz, R.: Estimation of Markov Regime-switching regression Models with endogenous swithing. Working Paper 2003–015C, Federal Researve Bank of St. Luis (2003) URL
  28. 28.
    Laloux, L., Cizeau, P., Bouchaud, J.P., Potters, M.: Noise dressing of financial correlation matrices. Phys. Rev. Lett. 83, 1467–1470 (1999)CrossRefGoogle Scholar
  29. 29.
    Lavielle, M., Teyssière, G.: Detection of multiple change-points in multivariate time series. Lith. Math. J. 46, 287–306 (2006)CrossRefMATHGoogle Scholar
  30. 30.
    Mandelbrot, B.: The variation of certain speculative prices. J. Bus. 36, 394–419 (1963)CrossRefGoogle Scholar
  31. 31.
    Mantegna, R.N., Stanley, H.E.: An Introduction to Econophysics- Correlations and Complexity in Finance. Cambridge University Press, Cambridge (2000)Google Scholar
  32. 32.
    Miao, B.Q., Zhao, L.C.: Detection of change points using rank methods. Commun. Stat. 17, 3207–3217 (1988)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Neyman, J., Pearson, K.: On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. Roy. Soc. Lond. A 231, 289–337 (1933)CrossRefGoogle Scholar
  34. 34.
    Ombao, H., Von Sachs, R., Guo, W.: SLEX analysis of multivariate nonstationary time series. J. Am. Stat. Assoc. 100, 519–531 (2005)CrossRefMATHGoogle Scholar
  35. 35.
    Ombao, H.C., Raz, J.A., Von Sachs, R., Guo, W.: The SLEX model of a non-stationary random process. Ann. Inst. Stat. Math. 54, 171–200 (2002)CrossRefMATHGoogle Scholar
  36. 36.
    Papp, G., Pafka, S., Nowak, M.A., Kondor, I.: Random matrix filtering in portfolio optimization. Acta Phys. Pol. B 36, 2757–2765 (2005)MathSciNetGoogle Scholar
  37. 37.
    Perreault, L., Haché, M., Slivitzky, M., Bobée, B.: Detection of changes in precipitation and runoff over eastern Canada and US using a Bayesian approach. Stochast. Environ. Res. Risk Assess. 13, 201–216 (1999)CrossRefMATHGoogle Scholar
  38. 38.
    Perreault, L., Bernier, J., Bobée, B., Parent, E.: Bayesian change-point analysis in hydrometeorological time series. Part 1. The normal model revisited. J. Hydrol. 235, 221–241 (2000)CrossRefGoogle Scholar
  39. 39.
    Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Stanley, H.E.: Universal and nonuniversal properties of cross correlations in financial time series. Phys. Rev. Lett. 83, 1471–1474 (1999)CrossRefGoogle Scholar
  40. 40.
    Quandt, R.E., Ramsey, J.B.: Estimating mixtures of normal distributions and switching regressions. J. Am. Stat. Assoc. 73, 730–738 (1978)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Sato, A.-H.: Recursive segmentation procedure based on the Akaike information criterion test. 2013 IEEE 37th Annual Signature Conference of Computer Software and Applications Conference (COMPSAC), pp. 226–233 (2013)Google Scholar
  42. 42.
    Sen, A., Srivastava, M.S.: On tests for detecting change in the mean. The Annals of Statistics 3, 98–108 (1975)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Shiryaev, A.N., Zhitlukhin, M.V.: Optimal stopping problems for a Brownian motion with a disorder on a finite interval (2012) arXiv:1212.3709
  44. 44.
    Vert, J., Bleakley, K.: Fast detection of multiple change-points shared by many signals using group LARS. Adv. Neural Info. Process. Syst. 23, 2343–2351 (2010)Google Scholar
  45. 45.
    Vincent, L.A.: A technique for the identification of inhomogeneities in Canadian temperature series. J. Clim. 11, 1094–1104 (1998)CrossRefGoogle Scholar
  46. 46.
    Wilks, S.S.: The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9, 60–62 (1938)CrossRefGoogle Scholar
  47. 47.
    Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. Roy. Stat. Soc. B 68, 49–67 (2006)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Graduate School of InformaticsKyoto UniversityKyotoJapan

Personalised recommendations