A framework of the applied data-centric social sciences is based on data-centric science. A methodology of data-centric science is very common and applicable to all the types of sciences. In this chapter, we will see a methodology used in applied data-centric sciences commonly.


Explanatory Data Analysis Differential Privacy Data Quality Management Sustainable Development Indicator Privacy Definition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abbasi, S., Cimato, S., Damiani, E.: Toward secure clustered multi-party computation: a privacy-preserving clustering protocol. In: Mustofa, K., Neuhold, E., Tjoa, A., Weippl, E., You, I. (eds.) Information and Communication Technology. Lecture Notes in Computer Science, vol. 7804, pp. 447–452. Springer, Berlin (2013)Google Scholar
  2. 2.
    AB-ROAD travel retrieval WebAPI:
  3. 3.
    Barnett, V., Lewis, T.: Outliers in Statistical Data. Wiley, New York (1998)Google Scholar
  4. 4.
    BBC Timeline: Libor-fixing scandal (6 Feb 2013) Accessed 29 Mar 2014
  5. 5.
    Ben-Gal, I.: Outlier detection. In: Maimon, O., Rockach, L. (eds.) Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers, pp. 131–147. Springer, New York (2005)CrossRefGoogle Scholar
  6. 6.
    Chan, P.K., Wei, F., Prodromidis, A.L., Stolfo, S.J.: Distributed data mining in credit card fraud detection. Intel. Syst. Appl. IEEE 14(6), 67–74 (1999)CrossRefGoogle Scholar
  7. 7.
    Chauvenet, W.: A Manual of Spherical and Practical Astronomy V.II, 1st edn. Lippincott, Philadelphia (1863) (Reprint of 1891 5th edn: Dover, NY (1960))Google Scholar
  8. 8.
  9. 9.
    Dean, R.B., Dixon, W.J.: Simplified statistics for small numbers of observations. Anal. Chem. 23(4), 636–638 (1951)CrossRefGoogle Scholar
  10. 10.
  11. 11.
  12. 12.
  13. 13.
  14. 14.
  15. 15.
    Grubbs, F.E.: Procedures for detecting outlying observations in samples. Technometrics 11(1), 1–21 (1969)CrossRefGoogle Scholar
  16. 16.
    Haas, S., Wohlgemuth, S., Echizen, I., Sonehara, N., Müller, G.: Aspects of privacy for electronic health records. Int. J. Med. Inform. 80(2), e26–e31 (2011)CrossRefGoogle Scholar
  17. 17.
    Helbling, D., Balietti, S.: From social data mining to forecasting socio-economic crises. Eur. Phys. J. Spec. Top. 195(1), 3–68 (2011)CrossRefGoogle Scholar
  18. 18.
    Jalan vacant room information retrieval WebAPI:
  19. 19.
    Jensen, M.: Towards privacy-friendly transparency services in inter-organizational business processes. In: 2013 IEEE 37th Annual Computer Software and Applications Conference Workshop, pp. 200–205 (2013)Google Scholar
  20. 20.
    Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., Vilhuber, L.: Privacy: theory meets practice on the map. In: 2008 IEEE 24th International Conference on Data Engineering, pp. 277–286 (2008)Google Scholar
  21. 21.
    Mahalanobis, P.C.: On the generalised distance in statistics. Proc. Natl. Inst. Sci. India 2(1), 49–55 (1936)MathSciNetMATHGoogle Scholar
  22. 22.
    Mehta, S.R., Vinterbo, S.A., Little, S.J.: Ensuring privacy in the study of pathogen genetics. Lancet Infect. Dis. 14, 70016 (2014)CrossRefGoogle Scholar
  23. 23.
    Peirce, B.: Criterion for the rejection of doubtful observations. Astron. J. 2(43), 161–163 (1852)CrossRefGoogle Scholar
  24. 24.
    Rahm, E., Do, H.H.: Data cleaning: problems and current approaches. IEEE Bull. Tech. Comm. Data Eng. 23(4), 3–13 (2000)Google Scholar
  25. 25.
  26. 26.
  27. 27.
    Reuters: Libor scandal may cost banks \({\$}\)14 billion in settlements: analysts (12 July 2012) Accessed 29 Mar 2014
  28. 28.
    Soni, S., Mehta, S., Hans, S.: Towards providing data validation as a service. In: 2012 IEEE 9th International Conference on Services Computing, pp. 570–577 (2012)Google Scholar
  29. 29.
  30. 30.
    Takeuchi, H., Kodama, N., Hashiguchi, T., Hayashi, D.: Automated healthcare data mining based on a personal dynamic healthcare system. In: Engineering in Medicine and Biology Society, EMBS ’06. 28th Annual International Conference of the IEEE, 30 Aug–3 Sept 2006, pp. 3604–3607 (2006)Google Scholar
  31. 31.
    The World DataBank of the World Bank:
  32. 32.
  33. 33.
    Tsubaki, H.: Valuation of partly disclosed datasets for prediction.In: icdmw, 2013 IEEE 13th International Conference on Data Mining Workshops, pp. 733–734 (2013)Google Scholar
  34. 34.
    Tukey, J. W.: Exploratory Data Analysis. Addison-Wesley, Reading (1977)Google Scholar
  35. 35.
  36. 36.
    Vatsalan, D., Christen, P., Verykios, V.S.: A taxonomy of privacy-preserving record linkage techniques. Inform. Syst. 38(6), 946–969 (2013)CrossRefGoogle Scholar
  37. 37.
    Yahoo! JAPAN text analytics WebAPI:

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Graduate School of InformaticsKyoto UniversityKyotoJapan

Personalised recommendations