Advertisement

Introduction

  • Aki-Hiro Sato
Chapter

Abstract

Recent development of information and communication technology enables us to acquire, collect, analyse data in various fields of socioeconomic-technological systems. In this chapter, we will address data from several different perspectives and define the applied data-centric social sciences. I will explain that limitation of our ability to understand our society from inductive approach is origins of complexity. Concepts and methodologies of data-centric science will be introduced and their potential applications and existing studies will be mentioned.

Keywords

Gross Domestic Product Data Assimilation Collective Behaviour International Standardisation Organisation International Civil Aviation Organisation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Acemoglu, D., Chernozhukov, V., Yildiz, M.: Fragility of asymptotic agreement under bayesian learning (2009). http://www.dklevine.com/archive/refs4814577000000000139.pdf
  2. 2.
    Albeverio, S., Jentsch, V., Kantz, H. (eds.): Extreme Events in Nature and Society. Springer, Berlin (2006)Google Scholar
  3. 3.
    Alfarano, S., Lux, T., Wagner, F.: Estimation of a simple agent-based model of financial markets: an application to Australian stock and foreign exchange data. Phys. A 370, 38–42 (2006)MathSciNetGoogle Scholar
  4. 4.
    Antal, T., Redner, S., Sood, V.: Evolutionary dynamics on degree-heterogeneous graphs. Phys. Rev. Lett. 96, 188104 (2006)Google Scholar
  5. 5.
    Antoniou, C., Ben-Akiva, M., Koutsopoulos, H.N.: Dynamic traffic demand prediction using conventional and emerging data sources. IEE Proc. Intell. Transp. Syst. 153, 97–104 (2006)Google Scholar
  6. 6.
    Aoyama, H., Fujiwara, Y., Iyetomi, H., Sato, A.H. (eds.): Econophysics 2011— the Hichhiker’s guide to the economy. In: Proceedings of the YITP Workshop on Econophysics. Oxford University Press, Oxford (2012). http://ptps.oxfordjournals.org/content/194.toc
  7. 7.
    Aoyama, H., Fujiwara, Y., Ikeda, Y., Iyetomi, H., Souma, W., Yoshikawa, H.: Econophysics and Companies: Statistical Life and Death in Complex Business Networks. Cambridge University Press, Cambridge (2010)Google Scholar
  8. 8.
    Arthur, W.B.: Increasing returns in the new world of business. Harvard Business Review (1996). http://hbr.org/1996/07/increasing-returns-and-the-new-world-of-business/ar/1. Accessed 3 March 2014
  9. 9.
    Aruka, Y.: Complexities of Production and Interacting Human Behaviour. Physica-Verlag, Heidelberg (2011)Google Scholar
  10. 10.
    Askitas, N., Zimmermann, K.F.: Google econometrics and unemployment forecasting. Appl. Econ. Q. 55(2), 107–120 (2009)Google Scholar
  11. 11.
    Axelrod, R.M.: The dissemination of culture: a model with local convergence and global polarization. J. Conflict Resolut. 41(2), 203–226 (1997)Google Scholar
  12. 12.
    Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou R3579X? Anonymized social networks, hidden patterns, and structural steganography. Commun. of the ACM 54(12), 133–141 (2011)Google Scholar
  13. 13.
    Baek, Y., Ha, M., Jeong, H.: Absorbing states of zero-temperature glauber dynamics in random networks. Phys. Rev. E 85, 031123 (2012). http://link.aps.org/doi/10.1103/PhysRevE.85.031123
  14. 14.
    Baeza-Yates, R., Maarek, Y.: Usage Data in Web Search: Benefits and Limitations. In: Ailamaki, A., Bowers, S. (eds.) Scientific and Statistical Database Management: Lecture Notes in Computer Science, vol. 7338, pp. 495–506. Springer, Berlin (2012)Google Scholar
  15. 15.
    Bahr, D.B., Passerini, E.: Statistical mechanics of opinion formation and collective behavior: Micro-sociology. J. Math. Sociol. 23, 1–27 (1998)MATHGoogle Scholar
  16. 16.
    Bass, F.: A new product growth model for consumer durables. Manage. Sci. 15, 215–227 (1969)MATHGoogle Scholar
  17. 17.
    Battiston, S., Puliga, M., Kaushik, R., Tasca, P., Caldarelli, G.: DebtRank: too central to fail? financial networks, the FED and systemic risk. Sci. Rep. 2, 541 (2012)Google Scholar
  18. 18.
    BBC: Population seven billion: UN sets out challenges. http://www.bbc.co.uk/news/world-15459643. Accessed 15 Aug 2013
  19. 19.
    Bettencourt, L.M.A., Lobo, J., Helbing, D., Kühnert, C., West, G.B.: Growth, innovation, scaling, and the pace of life in cities. Proc. Natl. Acad. Sci. USA 104, 7301–7306 (2007)Google Scholar
  20. 20.
    Bettencourt, L.M.A., Lobo, J., Strumsky, D., West, G.B.: Urban scaling and its deviations: revealing the structure of wealth, innovation and crime across cities. PLoS ONE 5(11), e13541 (2010)Google Scholar
  21. 21.
    Biswas, S., Sen, P.: Effect of the nature of randomness on quenching dynamics of the Ising model on complex networks. Phys. Rev. E 84, 066107 (2011)Google Scholar
  22. 22.
    Blank, A., Solomon, S.: Power laws in cities population, financial markets and internet sites (scaling in systems with a variable number of components). Phys. A 287, 279–288 (2000)MathSciNetGoogle Scholar
  23. 23.
    Bonanno, G., Caldarelli, G., Lillo, F., Miccichè, S., Vandewalle, N., Mantegna, R.N.: Networks of equities in financial markets. Eur. Phys. J. B 38, 363–371 (2004)Google Scholar
  24. 24.
    Bora, N., Zaytsev, V., Chang, Y.H., Maheswaran, R.: Spatiotemporal patterns in social networks. In: AAAI Technical Report FS-13-05, pp. 8–15 (2013)Google Scholar
  25. 25.
    Bordino, I., Battiston, S., Caldarelli, G., Cristelli, M., Ukkonen, A., Weber, I.: Web search queries can predict stock market volumes. PLoS ONE 7(7), e40014 (2012)Google Scholar
  26. 26.
    Bouchaud, J.P., Potters, M.: Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management. Cambridge Unversity Press, Cambridge (2000)Google Scholar
  27. 27.
    Bravo, G., Squazzoni, F., Boero, R.: Trust and partner selection in social networks: an experimentally grounded model. Soc. Netw. 34, 481–492 (2012)Google Scholar
  28. 28.
    Broder, A.: A taxonomy of web search. SIGIR Forum 36(2), 3–10 (2002)Google Scholar
  29. 29.
    Butler, D.: When google got flu wrong. Nature 494(7436), 155–156 (2013)Google Scholar
  30. 30.
    Cambria, E., Grassi, M., Hussain, A., Havasi, C.: Sentic computing for social media marketing. Multimedia Tools Appl. 59(2), 557–577 (2012)Google Scholar
  31. 31.
    Carrassi, A., Ghil, M., Trevisan, A., Uboldi, F.: Data assimilation as a nonlinear dynamical systems problem: stability and convergence of the prediction-assimilation system. Chaos 18, 023112 (2008)MathSciNetGoogle Scholar
  32. 32.
    Castellani, B., Hafferty, F.W.: Sociology and Complexity Science A New Field of Inquiry. Springer, Berlin (2009)MATHGoogle Scholar
  33. 33.
    Castellano, C., Loreto, V., Barrat, A., Cecconi, F., Parisi, D.: Comparison of voter and glauber ordering dynamics on networks. Phys. Rev. E 71, 066107 (2005). http://link.aps.org/doi/10.1103/PhysRevE.71.066107
  34. 34.
    Castellano, C.: Social influence and the dynamics of opinions: the approach of statistical physics. Manag. Decis. Econ. 33(5–6), 311–321 (2012). http://dx.doi.org/10.1002/mde.2555
  35. 35.
    Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591–646 (2009)Google Scholar
  36. 36.
    Chakrabarti, B.K., Chakraborti, A., Chatterjee, A. (eds.): Econophysics and Sociophysics: Trends and Perspectives. Wiley, Belrin (2007)Google Scholar
  37. 37.
    Challenges and Opportunities with Big Data: A community white paper developed by leading researchers across the United States, http://www.cra.org/ccc/files/docs/init/bigdatawhitepaper.pdf. Accessed 21 Oct 2013
  38. 38.
    Chapel, L., Castello, X., Bernard, C., Deffuant, G., Eguiluz, V.M., Martin, S., Miguel, M.S.: Viability and resilience of languages in competition. PLoS ONE 5(1), e8681 (2010)Google Scholar
  39. 39.
    Chen, P., Redner, S.: Majority rule dynamics in finite dimensions. Phys. Rev. E 71(3 Pt 2A), 036101 (2005)Google Scholar
  40. 40.
    Chi-Kang, L., Tzuoo-Ding, L., Chao-Hui, L.: Pattern analysis on the booking curve of an inter-city railway. J. East. Asia Soc. Transp. Stud. 6, 303–317 (2005)Google Scholar
  41. 41.
    Clarke, A.C.: Profiles of the Future: An Inquiry into the Limits of the Possible. Harper & Row, New York (1962)Google Scholar
  42. 42.
    Czaplicka, A., Hołyst, J.A.: Modeling of internet influence on group emotion. Int. J. Modern Phys. C 23(03), 1250020 (2012). http://www.worldscientific.com/doi/abs/10.1142/S0129183112500209
  43. 43.
    Da, Z., Engelberg, J., Gao, P.J.: In search of attention. J. Finance 66(5), 1461–1499 (2011)Google Scholar
  44. 44.
    Daley, R.: Atmospheric Data Analysis. Cambridge University Press, Cambridge (1991)Google Scholar
  45. 45.
    Daley, R.: Atmospheric data assimilation. J. Meteorol. Soc. Japan 75, 319–329 (1997)Google Scholar
  46. 46.
    D’Amuri, F., Marcucci, J.: "Google it!" Forecasting the US unemployment rate with a Google job search index. ISER Working Paper Series 2009–32 (2009)Google Scholar
  47. 47.
    Davenport, T.H., Patil, D.J.: Data scientist: the sexiest job of the 21st century. Harvard Bus. Rev. 90, 70–76 (2012)Google Scholar
  48. 48.
    Davison, D.B., Chen, E.: A brief introduction to the internet. Comput. Geosci. 21(6), 731–735 (1995)Google Scholar
  49. 49.
    Demographia: World urban areas & population projections. http://www.demographia.com/db-worldua.pdf. Accessed 15 Nov 2013
  50. 50.
    Deschâtres, F., Sornette, D.: Dynamics of book sales: endogenous versus exogenous shocks in complex networks. Phys. Rev. E 72, 016112 (2005)MathSciNetGoogle Scholar
  51. 51.
    Dixit, A.K., Weibull, J.W.: Political polarization. Proc. Natl. Acad. Sci. USA 104(18), 7351–7356 (2007)Google Scholar
  52. 52.
    Drożdż, S., Kwapień, J., Oświȩcimka, P., Rak, R.: The foreign exchange market: return distributions, multifractality, anomalous multifractality and the Epps effect. New J. Phys. 12, 105003 (2010)Google Scholar
  53. 53.
    Duan, W.Q., Stanley, H.E.: Cross-correlation and the predictability of financial return series. Phys. A 390, 290–296 (2011)Google Scholar
  54. 54.
    Economist: Data, data everywhere (2010). http://www.economist.com/node/15557443. Accessed 12 July 2013
  55. 55.
    Eisler, Z., Kertész, J.: Scaling theory of temporal correlations and size-dependent fluctuations in the traded value of stocks. Phys. Rev. E 73, 046109 (2006)Google Scholar
  56. 56.
    Embrechts, P., Resnick, S.I., Samorodnitsky, G.: Extreme value theory as a risk management tool. North Am. Actuarial J. 3, 30–41 (1999)MathSciNetMATHGoogle Scholar
  57. 57.
    Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events. Springer, Berlin (2000)Google Scholar
  58. 58.
    Epstein, J.M.: Why model? J. Artif. Soc. Soc. Simul. 11(4), 12 (2008)Google Scholar
  59. 59.
    Evans, J.A., Foster, J.G.: Metaknowledge. Science 331(6018), 721–725 (2011). doi: 10.1126/science.1201765 MathSciNetMATHGoogle Scholar
  60. 60.
    Flightradar24. http://www.flightradar24.com. Accessed 31 Jan 2014
  61. 61.
    Fujie, R., Aihara, K., Masuda, N.: A model of competition among more than two languages. J. Stat. Phys. 151(1–2), 289–303 (2013)MathSciNetMATHGoogle Scholar
  62. 62.
    Gabaix, X.: Zipf’s law for cities: an explanation. Q. J. Econ. 114, 739–767 (1999)MATHGoogle Scholar
  63. 63.
    Galam, S.: Minority opinion spreading in random geometry. Eur. Phys. J. B 25(4), 403–406 (2002)Google Scholar
  64. 64.
    Gao, W., Yoshinaga, N., Kaji, N., Kitsuregawa, M.: Collective sentiment classification based on user leniency and product popularity. In: W. Gao, N. Yoshinaga, N. Kaji, M. Kitsuregawa (eds.) Collective Sentiment Classification based on User Leniency and Product Popularity, pp. 357–365. Department of English, National Chengchi University (2013). http://id.nii.ac.jp/0069/00024244
  65. 65.
    Gao, L., Song, C., Gao, Z., Barabási, A.L., Bagrow, J.P., Wang, D.: Quantifying information flow during emergencies. Sci. Rep. 4, 3997 (2014)Google Scholar
  66. 66.
    Garas, A., Garcia, D., Skowron, M., Schweitzer, F.: Emotional persistence in online chatting communities. Sci. Rep. 2, 402 (2012). http://dx.doi.org/10.1038/srep00402
  67. 67.
    Garas, A., Argyrakis, P.: A network approach for the scientific collaboration in the European framework programs. Europhys. Lett. 84(6), 68005 (2008)Google Scholar
  68. 68.
    Garibaldi, U., Scalas, E.: Finitary Probabilistic Methods in Econophysics. Cambridge University Press, Cambridge (2010)Google Scholar
  69. 69.
    Ginsberg, J., Mohebbi, M.H., Patel, R.S., Brammer, L., Smolinski, M.S., Brilliant, L.: Detecting influenza epidemics using search engine query data. Nature 457(7232), 1012–1015 (2009)Google Scholar
  70. 70.
    Glauber, R.J.: Time dependent statistics of the Ising model. J. Math. Phys. 4, 294–307 (1963)MathSciNetMATHGoogle Scholar
  71. 71.
    Golder, S.A., Macy, M.W.: Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science 333(6051), 1878–1881 (2011). doi: 10.1126/science.1202775
  72. 72.
    González, M.C., Hidalgo, C.A., Barabási, A.L.: Understanding individual human mobility patterns. Nature 453, 779–782 (2008)Google Scholar
  73. 73.
    González-Val, R., Lanaspa, L., Sanz-Gracia, F.: Gibrat’s law for cities, growth regressions and sample size. Econ. Lett. 118, 367–369 (2013)Google Scholar
  74. 74.
    Goodchild, M.F.: Citizens as voluntary sensors: spatial data infrastructure in the world of web 2.0. Int. J. Spat. Data Infrastruct. Res. 2, 24–32 (2007)Google Scholar
  75. 75.
    Goodman, N.: Fact, Fiction, and Forecast. Harvard University Press, Cambridge (1955)Google Scholar
  76. 76.
    Goodwin, R.: The nonlinear accelerator and the persistence of business cycles. Econometrica 19, 1–17 (1951)MATHGoogle Scholar
  77. 77.
    Google Flu Trend. http://www.google.org/flutrends. Accessed 5 Jan 2014
  78. 78.
    Granovetter, M.S.: The strength of weak ties. Am. J. Sociol. 78, 1360–1380 (1973)Google Scholar
  79. 79.
    Granovetter, M.S.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)Google Scholar
  80. 80.
    Guimer, R., Mossa, S., Turtschi, A., Amaral, L.A.N.: The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. Proc. Natl. Acad. Sci. USA 102(22), 7794–7799 (2005). http://www.pnas.org/content/102/22/7794.abstract
  81. 81.
    Guimerà, R., Amaral, L.A.N.: Modeling the world-wide airport network. Eur. Phys. J. B 38, 381–385 (2004)Google Scholar
  82. 82.
    Gworek, S., Kwapień, J., Drożdż, S.: Sign and amplitude representation of the forex networks. Acta Phys. Pol. A 117, 681–687 (2010)Google Scholar
  83. 83.
    Haensel, A., Koole, G., Erdman, J.: Estimating unconstrained customer choice set demand: a case study on airline reservation data. J. Choice Model. 4(3), 75–87 (2011). http://dx.doi.org/10.1016/S1755-5345(13),70043--5
  84. 84.
    Häggström, O.: Zero-temperature dynamics for the ferromagnetic Ising model on random graphs. Phys. A 310(3–4), 275–284 (2002)MathSciNetMATHGoogle Scholar
  85. 85.
    Handy, C.: 21 Ideas for Managers. Jossey-Bass, San Francisco (2000)Google Scholar
  86. 86.
    Hashimoto, Y., Ito, T.: Effects of Japanese macroeconomic statistic announcements on the dollar/yen exchange rate: high-resolution picture. J. Jpn. Int. Econ. 24, 334–354 (2010)Google Scholar
  87. 87.
    Hegselmann, R., Flache, A.: Understanding complex social dynamics: a plea for cellular automata based modelling. J. Artif. Soc. Soc. Simul. 1(3) (1998). http://jasss.soc.surrey.ac.uk/1/3/1.html
  88. 88.
    Helbing, D., Johansson, A., Al-Abideen, H.Z.: Dynamics of crowd disasters: an empirical study. Phys. Rev. E 75, 046109 (2007)Google Scholar
  89. 89.
    Helbing, D.: Social Self-Organization. Springer, Belrin (2012)Google Scholar
  90. 90.
    Hickes, J.: A Contribution to the Theory of the Trade Cycle. Oxford University Press, Oxford (1950)Google Scholar
  91. 91.
    Himmler, F., Amberg, M.: Data integration framework for heterogeneous system landscapes within the digital factory domain. In: Procedia Engineering 69, 1138–1143 (2014). http://dx.doi.org/10.1016/j.proeng.2014.03.102
  92. 92.
    Holme, P., Newman, M.E.J.: Nonequilibrium phase transition in the coevolution of networks and opinions. Phys. Rev. E 74(5 Pt 2), 056108 (2006)Google Scholar
  93. 93.
    Horvatic, D., Stanley, H.E., Podobnik, B.: Detrended cross-correlation analysis for non-stationary time series with periodic trends. Europhys. Lett. 94, 18007 (2011)Google Scholar
  94. 94.
    Huang, X., Vodenska, I., Havlin, S., Stanley, H.E.: Cascading failures in bi-partite graphs: Model for systemic risk propagation. Scientific reports 3, 1219 (2013)Google Scholar
  95. 95.
    Hui, D., Jackson, R.B.: Uncertainty in allometric exponent estimation: a case study in scaling metabolic rate with body mass. J. Theor. Biol. 249(1), 168–177 (2007)MathSciNetGoogle Scholar
  96. 96.
    Hunt, R.: Internet-services, facilities, protocols and architecture. Comput. Commun. 20, 1397–1411 (1998)Google Scholar
  97. 97.
    Inoue, J.I., Sazuka, N.: Queueing theoretical analysis of foreign currency exchange rates. Quant. Financ. 10, 121–130 (2010)MathSciNetGoogle Scholar
  98. 98.
    Ishii, A., Arakaki, H., Matsuda, N., Umemura, S., Urushidani, T., Yamagata, N., Yoshida, N.: The ’hit’ phenomenon: a mathematical model of human dynamics interactions as a stochastic process. New J. Phys. 14(6), 063018 (2012). www.stacks.iop.org/1367-2630/14/i=6/a=063018
  99. 99.
    Ising, E.: Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik 31(1), 253–258 (1925). http://dx.doi.org/10.1007/BF02980577
  100. 100.
    Jansen, B.J., Liu, Z., Weaver, C., Campbell, G., Gregg, M.: Real time search on the web: Queries, topics, and economic value. Inf. Process. Manage. 47(4), 491–506 (2011)Google Scholar
  101. 101.
    Jiang, S., Zhang, J., Ong, Y.S.: A multiagent evolutionary framework based on trust for multiobjective optimization. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems Volume 1, AAMAS ’12, pp. 299–306. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2012). http://dl.acm.org/citation.cfm?id=2343576.2343619
  102. 102.
    Johansson, A., Helbing, D., Shukla, P.K.: Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Adv. Complex Syst. 10(2), 271–288 (2007)MathSciNetMATHGoogle Scholar
  103. 103.
    Johnson, J.: Hypernetworks for policy design in systems of systems of systems. In: Glass, K., Colbaugh, R., Ormerod, P., Tsao, J. (eds.) Complex Sciences: Lecture Notes of the Institute for Computer Sciences. Social Informatics and Telecommunications Engineering, vol. 126, pp. 179–189. Springer, Cham (2013)Google Scholar
  104. 104.
    Jung, C.G.: Synchronicity: An Acausal Connecting Principle. Routledge, London (2006)Google Scholar
  105. 105.
    Jung, W.S., Wang, F., Stanley, H.E.: Gravity model in the korean highway. Europhys. Lett. 81(4), 48005 (2008)Google Scholar
  106. 106.
    Kaitaniemi, P.: Testing the allometric scaling laws. J. Theor. Biol. 228(2), 149–153 (2004)MathSciNetGoogle Scholar
  107. 107.
    Kaldor, N.: A model of the trade cycle. Econ. J. 50, 78–92 (1940)Google Scholar
  108. 108.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82 (Series D), 35–45 (1960). www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf
  109. 109.
    Kaltwasser, P.R.: Uncertainty about fundamentals and herding behavior in the forex market. Phys. A 389, 1215–1222 (2010)Google Scholar
  110. 110.
    Kasuga, Y., Ichikawa, M., Deguchi, H., Kanatani, Y.: A simulation model for analyzing the night-time emergency health care system in Japan. Dev. Bus.Simul. Experiential Learn. 38, 171–181 (2011)Google Scholar
  111. 111.
    Kato, M.P., Sakai, T., Tanaka, K.: When do people use query suggestion? A query suggestion log analysis. Inf. Retrieval 16(6), 725–746 (2013)Google Scholar
  112. 112.
    Khaleghi, B., Khamis, A., Karray, F.O., Razavi, S.N.: Multisensor data fusion: a review of the state-of-the-art. Inf. Fusion 14(1), 28–44 (2013). http://dx.doi.org/10.1016/j.inffus.2011.08.001
  113. 113.
    Kholodilin, K.A., Podstawski, M., Siliverstovs, B.: Do google searches help in nowcasting private consumption? A real-time evidence for the US. KOF Working Papers 256 (2010)Google Scholar
  114. 114.
    Kietzmann, J., Canhoto, A.: Bittersweet! understanding and managing electronic word of mouth. J. Public Aff. 13, 146–159 (2013)Google Scholar
  115. 115.
    Kim, H., Bearman, P.: The structure and dynamics of movement participation. Am. Sociol. Rev. 62, 70–93 (1997)Google Scholar
  116. 116.
    King, G.: Ensuring the data-rich future of the social sciences. Science 331(6018), 719–721. New York Science (2011). doi: 10.1126/science.1197872
  117. 117.
    Kirman, A.: Ants, Rationality, and Recruitment. Q. J. Econ. 108(1), 137–156 (1993). ideas.repec.org/a/tpr/qjecon/v108y1993i1p137-56.htmlGoogle Scholar
  118. 118.
    Kitagawa, G.: Data centric science for information society. In: Takayasu, H., Takayasu, M., Watanabe, T. (eds.) Econophysics Approaches to Large-Scale Business Data and Financial Crisis, pp. 211–225. Springer, Tokyo (2010)Google Scholar
  119. 119.
    Knight, F.H.: Risk, Uncertainty, and Profit. Houghton Mifflin, New York (1921)Google Scholar
  120. 120.
    Konishi, S., Kitagawa, G.: Information Criteria and Statistical Modeling. Springer, New York (2008)MATHGoogle Scholar
  121. 121.
    Korth, H.F.: Database research faces the information explosion. Commun. ACM 40, 139–142 (1997)Google Scholar
  122. 122.
    Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable from digital records of human behavior. Proc. Natl. Acad. Sci. USA 110(15), 5802–5805 (2013)Google Scholar
  123. 123.
    Kuninaka, H., Matsushita, M.: Modelling of population migration to reproduce rank-size distribution of cities in Japan. In: Zhou, J. (ed.) Complex Sciences: Lecture Notes of the Institute for Computer Sciences. Social Informatics and Telecommunications Engineering, vol. 4, pp. 441–445. Springer, Berlin (2009)Google Scholar
  124. 124.
    Kydland, F.E., Prescott, E.C.: Time to build and aggregate flucuations. Econometrica 50, 1345–1370 (1982)MATHGoogle Scholar
  125. 125.
    Lambiotte, R., Ausloos, M.: Endo-vs. exo-genous shocks and relaxation rates in book and music sales. Phys. A 362, 485–494 (2005)Google Scholar
  126. 126.
    Landauer, T.K.: How much do people remember? Some estimates of the quantity of learned information in long-term memory. Cognitive sci. 10, 477–493 (1986)Google Scholar
  127. 127.
    Lazer, D., Pentland, A.S., Adamic, L., Aral, S., Barabasi, A.L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D., Alstyne, M.V.: Life in the network: the coming age of computational social science. Science 323(5915), 721–723 (2009)Google Scholar
  128. 128.
    Lebaron, B.: Agent-Based Computational Finance. In: Schmedders, K., Judd, K.L. (eds.) Handbook of Computational Economics, pp. 1187–1233. Elsevier, Amsterdam (2006)Google Scholar
  129. 129.
    Lee, E.A.: Cps foundations. In: Proc. of the 47th Design Automation Conference (DAC), pp. 737–742. ACM (2010)Google Scholar
  130. 130.
    Leyvraz, F., Redner, S.: Scaling theory for migration-driven aggregate growth. Phys. Rev. Lett. 88, 068301 (2002)Google Scholar
  131. 131.
    Li, J., Liu, F.: A proposed framework of ewom and etrust in online hotel booking: the influence of an e-intermediary. In: International Conference on Management and Service Science (MASS) 2011, pp. 1–4 (2011)Google Scholar
  132. 132.
    Liu, L.Z., Qian, X.Y., Lu, H.Y.: Cross-sample entropy of foreign exchange time series. Phys. A 389, 4785–4792 (2010)Google Scholar
  133. 133.
    Mantegna, R.N.: Hierarchical structure in financial markets. Eur. Phys. J. B 11, 193–197 (1999)Google Scholar
  134. 134.
    Mantegna, R.N., Stanley, H.E.: An Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge University Press, Cambridge (2000)Google Scholar
  135. 135.
    Marsden, P.V., Campbell, K.E.: Measuring tie strength. Soc. Forces 63, 482–501 (1984)Google Scholar
  136. 136.
    Marwell, G., Oliver, P.: The Critical Mass in Collective Action: A Micro-Social Theory. Cambridge University Press, New York (1993)Google Scholar
  137. 137.
    Masuda, N., Ohtsuki, H.: Evolutionary dynamics and fixation probabilities in directed networks. New J. Phys. 11, 033012 (2009)Google Scholar
  138. 138.
    Meadows, D.H., Meadows, D.L., Randers, J., Behrens, W.W.I.: The Limits to Growth. Universe Books, New York (1972)Google Scholar
  139. 139.
    Miccichè, S., Bonanno, G., Lillo, F., Mantegna, R.N.: Volatility in financial markets: stochastic models and empirical results. Phys. A 314, 756–761 (2002)MATHGoogle Scholar
  140. 140.
    Mira, J., Seoane, L.F., Nieto, J.J.: The importance of interlinguistic similarity and stable bilingualism when two languages compete. New J. Phys. 13(3), 033007 (2011). http://groups.lis.illinois.edu/amag/langev/paper/mira2011importancegsc.html
  141. 141.
    Mira, J., Paredes, A.: Interlinguistic similarity and language death dynamics. Europhys. Lett. 69(6), 1031–1034 (2005)Google Scholar
  142. 142.
    Mitamura, T., Yoshida, K.: Viewers’ side analysis of social interests. In: Proceedings of the 2012 IEEE 12th International Conference on Data Mining Workshops, ICDMW ’12, pp. 301–308. IEEE Computer Society, Washington, DC, USA (2012). http://dx.doi.org/10.1109/ICDMW.2012.28
  143. 143.
    Mizuno, T., Ishikawa, A., Fujimoto, S., Watanabe, T.: Power laws in firm productivity. In: Aoyama, H., Fujiwara, Y., Iyetomi, H., Sato, A.H. (eds.) Econophysics 2011—the Hichhiker’s guide to the economy. Proceedings of the YITP Workshop on Econophysics. vol. 194, pp. 122–134. Oxford University Press, Oxford (2012). http://ptps.oxfordjournals.org/content/194/122.full.pdf
  144. 144.
    Mizuno, T., Toriyama, M., Terano, T., Takayasu, M.: Pareto law of the expenditure of a person in convenience stores. Phys. A 387, 3931–3935 (2008)MathSciNetGoogle Scholar
  145. 145.
    Mizuno, T., Watanabe, T.: A statistical analysis of product prices in online market. Eur. Phys. J. B 76, 501–505 (2010)Google Scholar
  146. 146.
    Mostafa, M.M.: An emotional polarity analysis of consumers airline service tweets. Soc. Netw. Anal. Mining 3(3), 635–649 (2013). http://dx.doi.org/10.1007/s13278-013-0111-2
  147. 147.
    Mountain, D., Raper, J.F.: Modelling human spatio-temporal behaviour: a challenge for location-based services. In: Proc. of the 6th Internat. Conference on GeoComputation, University of Queensland, Brisbane, Australia, pp. 24–26 September (2001)Google Scholar
  148. 148.
    Nakano, S., Higuchi, T.: Estimation of a long-term variation of a magnetic-storm index using the merging particle filter. IEICE TRANSACTIONS on Information and Systems E92-D(7), 1382–1387 (2009)Google Scholar
  149. 149.
    Ni, X.H., Jiang, Z.Q., Gu, G.F., Ren, F., Chen, W., Zhou, W.X.: Scaling and memory in the non-poisson process of limit order cancelation. Phys. A Statistical Mechanics and its Applications 389(14), 2751–2761 (2010). http://dx.doi.org/10.1016/j.physa.2010.02.040
  150. 150.
    Nishi, R., Masuda, N.: Collective opinion formation model under bayesian updating and confirmation bias. Phys. Rev. E 87(6), 062123 (2013)Google Scholar
  151. 151.
    O’Connor, P., Höpken, W., Gretzel, U. (eds.): Information and Communication Technologies in Tourism 2008. Springer, Vienna (2008)Google Scholar
  152. 152.
    Ohnishi, T., Mizuno, T., Aihara, K., Takayasu, M., Takayasu, H.: Statistical properties of the moving average price in dollar-yen exchange rates. Phys. A 344, 207–210 (2004)Google Scholar
  153. 153.
    Oliver, P.E.: Formal models of collective action. Ann. Rev. Sociol. 19, 271–300 (1993)Google Scholar
  154. 154.
    Olson, M.J.: The Logic of Collective Action: Public Goods and the Theory of Goods. Harvard University Press, Cambridge (1965)Google Scholar
  155. 155.
    Pan, B., Li, X.: The long tail of destination image and online marketing. Ann. Tourism Res. 38(1), 132–152 (2011)Google Scholar
  156. 156.
    Patriarca, M., Heinsalu, E.: Influence of geography on language competition. Phys. A 388(2–3), 174–186 (2009)Google Scholar
  157. 157.
    Paul, T., Kimball, J.W., Zawodniok, M.J., Roth, T.P., McMillin, B.M.: Invariants as a unified knowledge model for cyber-physical systems. In: K.J. Lin, C. Huemer, M.B. Blake, B. Benatallah (eds.) Proceedings of IEEE International Conference on Service Oriented Computing and Applications (SOCA), pp. 1–8. IEEE (2011)Google Scholar
  158. 158.
    Paul, T., Kimball, J.W., Zawodniok, M.J., Roth, T.P., McMillin, B.M., Chellappan, S.: Unified invariants for cyber-physical switched system stability. Smart Grid, IEEE Trans 5(1), 112–120 (2014)Google Scholar
  159. 159.
    Podobnik, B., Horvatic, D., Petersen, A.M., Stanley, H.E.: Cross-correlations between volume change and price change. Proc. Natl. Acad. Sci. USA 106, 22079–22084 (2009)MATHGoogle Scholar
  160. 160.
    Podobnik, B., Horvatic, D., Petersen, A.M., Njavro, M., Stanley, H.E.: Common scaling behavior in finance and macroeconomics. Eur. Phys. J. B 76, 487–490 (2010)MathSciNetMATHGoogle Scholar
  161. 161.
    Pontieri, L., Ursino, D., Zumpano, E.: An approach for the extensional integration of data sources with heterogeneous representation formats. Data Knowledge Engineering 45(3), 291–331 (2003). http://www.sciencedirect.com/science/article/pii/S0169023X02001921
  162. 162.
    Portal Site of Official Statistics of Japan by National Statistics Center. http://www.e-stat.go.jp. Accessed 3 March 2014
  163. 163.
    Preis, T., Golke, S., Paul, W., Schneider, J.J.: Multi-agent-based order book model of financial markets. Europhys. Lett. 75(3), 510–516 (2006). http://stacks.iop.org/0295-5075/75/i=3/a=510
  164. 164.
    Preis, T., Moat, H.S., Stanley, H.E.: Quantifying trading behavior in financial markets using google trends. Sci. Rep. 3, 1684 (2013)Google Scholar
  165. 165.
    Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based simulation platforms: Review and development recommendations. Simulation 82(9), 609–623 (2006). http://sim.sagepub.com/content/82/9/609.abstract
  166. 166.
    Reades, J., Calabrese, F., Sevtsuk, A., Ratti, C.: Cellular census: explorations in urban data collection. Pervasive Comput. 6, 30–38 (2007)Google Scholar
  167. 167.
    Rebitzky, R.R.: The influence of fundamentals on exchange rates: findings from analyses of news effects. J. Econ. Surv. 24, 680–704 (2010)Google Scholar
  168. 168.
    Richards, L.: Handling Qualitative Data. Sage publications, London (2005)Google Scholar
  169. 169.
    Risken, H.: The Fokker-Planck Equation: Methods of Solution and Applications. Springer, Berlin (1989)MATHGoogle Scholar
  170. 170.
    Rogers, R.: Digital methods. MIT Press, Cambridge (2010)Google Scholar
  171. 171.
    Sabherwal, R., Becerra-Fernandez, I.: Business Intelligence. Wiley, Hoboken (2011)Google Scholar
  172. 172.
    Samuelson, P.A.: Interactions between the multiplier analysis and the principle of acceleration. Rev. Econ. Stat. 21, 75–78 (1939)Google Scholar
  173. 173.
    Sano, Y., Yamada, K., Watanabe, H., Takayasu, H., Takayasu, M.: Empirical analysis of collective human behavior for extraordinary events in the blogosphere. Phys. Rev. E 87, 012805 (2013). http://link.aps.org/doi/10.1103/PhysRevE.87.012805
  174. 174.
    Sato, A.H.: Japanese international air travel: the relationship between flight ticket price and geodesic distance. In: Proceedings 2012 IEEE World Congress on Computational Intelligence (Brisbane), pp. 2821–2826 (2012)Google Scholar
  175. 175.
    Sato, A.H., Takayasu, H.: Dynamic numerical models of stock market price: from microscopic determinism to macroscopic randomness. Phys. A 250, 231–252 (1998)MATHGoogle Scholar
  176. 176.
    Sato, A.H., Hołyst, J.A.: Characteristic periodicities of collective behavior at the foreign exchange market. Eur. Phys. J. B 62, 373–380 (2008)Google Scholar
  177. 177.
    Sato, A.H.: Patterns of regional travel behavior: an analysis of Japanese hotel reservation data. Int. Rev. of Finan. Anal. 23, 55–65 (2012)Google Scholar
  178. 178.
    Sazuka, N., Inoue, J., Scalas, E.: The distribution of first-passage times and durations in forex and future markets. Phys. A 388, 2839–2853 (2009)Google Scholar
  179. 179.
    Schelling, T.C.: Hockey helmets, concealed weapons, and daylight saving: a study of binary choices with externalities. J. Conflict Resolut. 17, 381–428 (1973)Google Scholar
  180. 180.
    Schumpeter, J.A.: The Theory of Economic Development. Transaction Publishers, New Brunswick (1983)Google Scholar
  181. 181.
    Schweitzer, F.: Brownian Agents and Active Particles. Springer, Berlin (2003)MATHGoogle Scholar
  182. 182.
    Shiozawa, Y., Matsui, H., Taniguchi, K., Nakajima, Y., Koyama, Y., Hashimoto, F.: Artificial Market Experiments with the U-Mart System. Springer, Tokyo (2008)Google Scholar
  183. 183.
    Shou, L., Wu, S.: Supporting efficient social media search in cyber-physical web. IEEE Data Eng. Bull. 36(3), 83–90 (2013)Google Scholar
  184. 184.
    Sinha, S., Chatterjee, A., Chakraborti, A., Chakrabarti, B.K.: Econophysics: An Introduction. Wiley, Berlin (2010)Google Scholar
  185. 185.
    Smith, G.P.: Google internet search activity and volatility prediction in the market for foreign currency. Finance Res. Lett. 9(2), 103–110 (2012)Google Scholar
  186. 186.
    Soni, S., Mehta, S., Hans, S.: Towards providing data validation as a service. In: Services Computing (SCC), 2012 IEEE Ninth International Conference on, pp. 570–577 (2012). doi: 10.1109/SCC.2012.82
  187. 187.
    Sood, V., Redner, S.: Voter model on heterogeneous graphs. Phys. Rev. Lett. 94(17), 178701 (2005)Google Scholar
  188. 188.
    Sornette, D.: Why Stock Markets Crash: Critical Events in Complex Financial Systems. Princeton University Press, Princeton (2003)Google Scholar
  189. 189.
    Souza, S.R., Goncaleves, S.: Dynamical model for competing opinions. Phys. Rev. E 85, 056103 (2012)Google Scholar
  190. 190.
    Spirin, V., Krapivsky, P.L., Redner, S.: Fate of zero-temperature Ising ferromagnets. Phys. Rev. E 63, 036118 (2001). http://link.aps.org/doi/10.1103/PhysRevE.63.036118
  191. 191.
    Swearingen, C.D., Ripberger, J.T.: Google Insights and U.S. senate elections: does search traffic provide a valid measure of public attention to political candidates? Social Science Quarterly (2014). (In press)Google Scholar
  192. 192.
    Takahashi, S., Sallach, D., Rouchier, J. (eds.): Advancing Social Simulation: The First World Congress. Springer, Tokyo (2007)Google Scholar
  193. 193.
    Takayasu, H. (ed.): The Advent of Econophysics. Spriger, Tokyo (2002)Google Scholar
  194. 194.
    Takayasu, H. (ed.): Practical Fruits of Econophysics. Springer, Tokyo (2006)Google Scholar
  195. 195.
    Taleb, N.N.: The Black Swan: The impact of the highly improbable. Random House, New York (2007)Google Scholar
  196. 196.
    Tan, K.C., Lee, T.H., Khor, E.F.: Evolutionary algorithms for multi-objective optimization: performance assessments and comparisons. In: Proceedings of the 2001 Congress on Evolutionary Computation 2001, vol. 2, pp. 979–986 (2001). doi: 10.1109/CEC.2001.934296
  197. 197.
    Tanuma, H., Deguchi, H., Shimizu, T.: Soars: Spot oriented agent role simulator design and implementation. In: Terano, T., Kita, H., Kaneda, T., Arai, K., Deguchi, H. (eds.) Agent-Based Simulation: From Modeling Methodologies to Real-World Applications, Agent-Based Social Systems, vol. 1, pp. 1–15. Springer, Tokyo (2005)Google Scholar
  198. 198.
    Terano, T.: The shape of experiment-based management science to come (2012). The 1st General conference on emerging arts of research on management and administration (GEAR), http://www.trn.dis.titech.ac.jp/GEAR/pdf/Terano2012GEAR.pdf
  199. 199.
    Tesfatsion, L.: Agent-based computational economics: growing economies from the bottom up. Artif. Life 8, 55–82 (2002)Google Scholar
  200. 200.
    Tesfatsion, L., Judd, K.L. (eds.): Handbook of Computational Economics. Elsevier, Amsterdam (2006)MATHGoogle Scholar
  201. 201.
    Tomasello, M.V., Napoletano, M., Garas, A., Schweitzer, F.: The rise and fall of R&D networks (2013). http://arxiv.org/abs/1304.3623
  202. 202.
    Tsubaki, H.: Valuation of partly disclosed datasets for prediction. 2013 IEEE 13th International Conference on Data Mining Workshops pp. 733–734 (2013). http://doi.ieeecomputersociety.org/10.1109/ICDMW.2013.148
  203. 203.
    Tuncay, C.: Socioeconophysics: Opinion dynamics for number of transactions and price, a trader based model. Int. J. Mod. Phys. 17, 1495–1500 (2006)MATHGoogle Scholar
  204. 204.
    UK data archive. http://www.data-archive.ac.uk. Accessed 3 Jan 2014
  205. 205.
    Vazquez, F., Eguíluz, V.M., Miguel, M.S.: Generic absorbing transition in coevolution dynamics. Phys. Rev. Lett. 100(10), 108702 (2008)Google Scholar
  206. 206.
    Vazquez, F., Castello, X.: Agent based models of language competition: macroscopic descriptions and order-disorder transitions. J. Stat. Mech. Theory Exp. 2010(04), P04007 (2010)Google Scholar
  207. 207.
    Verdone, R. (ed.): Wireless Sensor Networks. Springer, Berlin (2008)Google Scholar
  208. 208.
    Vlastakis, N., Markellos, R.N.: Information demand and stock market volatility. J. Banking Finance 36(6), 1808–1821 (2012)Google Scholar
  209. 209.
    Vosen, S., Schmidt, T.: Forecasting private consumption: survey-based indicators vs. google trends. J. Forecast. 30(6), 565–578 (2011)MathSciNetMATHGoogle Scholar
  210. 210.
    Von Bertalanffy, L.: General System Theory: Foundations, Development Applications. George Braziller, New York (1969)Google Scholar
  211. 211.
    Von Foerster, H.: Observing Systems. Intersystems Publications, California (1984)Google Scholar
  212. 212.
    Von Neumann, J.: The Computer and the Brain. Yale Univesity Press, New Haven (1958)MATHGoogle Scholar
  213. 213.
    Wang, F., Shieh, S.J., Havlin, S., Stanley, H.E.: Statistical analysis of the overnight and daytime return. Phys. Rev. E 79, 056109 (2009)Google Scholar
  214. 214.
    Watanabe, H., Takayasu, H., Takayasu, M.: Relations between allometric scalings and fluctuations in complex systems: the case of Japanese firms. Phys. A 392, 741–756 (2013)Google Scholar
  215. 215.
    Watts, D.J.: A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. USA 99(9), 5766–5771 (2002)MathSciNetMATHGoogle Scholar
  216. 216.
    Watts, D.J., Dodds, P.S.: Influentials, networks, and public opinion formation. J. Consu. Res. 34, 441–458 (2007)Google Scholar
  217. 217.
    Weber, I., Jaimes, A.: Who uses web search for what? And how? In: WSDM ’11 Proceedings of the fourth ACM international conference on Web search and data mining, pp. 15–24. ACM (2011)Google Scholar
  218. 218.
    Wen, H.J., Chen, H.G., Hwang, H.G.: E-commerce web site design: strategies and models. Inf. Manage. Comput. Sec. 9, 5–12 (2001)Google Scholar
  219. 219.
    Wymbs, C.: How e-commerce is transforming and internationalizing service industries. J. Serv. Mark. 14, 463–477 (2000)Google Scholar
  220. 220.
    Xiang, Z., Pan, B.: Travel queries on cities in the united states: implications for search engine marketing for tourist destinations. Tourism Manage. 32(1), 88–97 (2011)Google Scholar
  221. 221.
    Yakovenko, V.M.: Statistical mechanics of money, income, debt, and energy consumption. Sci. Culture 76(9–10), 430–436 (2010)Google Scholar
  222. 222.
    Yamauchi, T., Hayashi, Y., Nakano, Y.I.: Searching emotional scenes in TV programs based on twitter emotion analysis. In: Ozok, A.A., Zaphiris, P. (eds.) Online Communities and Social Computing. Lecture Notes in Computer Science, vol. 8029, pp. 432–441. Springer, Berlin Heidelberg (2013)Google Scholar
  223. 223.
    Yang, C., Kurahashi, S., Ono, I., Terano, T.: Pattern-oriented inverse simulation for analyzing social problems: Family strategies in civil service examination in imperial china. Adv. Complex Syst. 15, 1250038 (2012)MathSciNetGoogle Scholar
  224. 224.
    Zanin, M., Lacasa, L., Cea, M.: Dynamics in scheduled networks. Chaos 19(2), 023111 (2009). http://scitation.aip.org/content/aip/journal/chaos/19/2/10.1063/1.3129785
  225. 225.
    Zhang, J., Yu, T.: Allometric scaling of countries. Phys. A 389, 4887–4896 (2010)Google Scholar
  226. 226.
    Zhang, M., Gong, T.: Principles of parametric estimation in modeling language competition. Proc. Natl. Acad. Sci. USA 110(24), 9698–9703 (2013)Google Scholar
  227. 227.
    Zimper, A., Ludwig, A.: On attitude polarization under bayesian learning with non-additive beliefs. J. Risk Uncertainty 39(2), 181–212 (2009)MATHGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Graduate School of InformaticsKyoto UniversityKyotoJapan

Personalised recommendations