Skip to main content
  • 771 Accesses

Abstract

Glaucoma, an optic neuropathy resulting from retinal ganglion cell (RGC) death, is one of the leading causes of blindness worldwide. The causes of RGC death in glaucoma have been reported to arise from intraocular pressure, dysregulation of ocular circulation, autoimmune diseases, and genetic predisposition and so on. However, its pathological mechanisms remain unclear. Recently, it is focused on the involvement of endoplasmic reticulum (ER) stress in glaucoma. The authors demonstrated, for the first time, that various types of cellular stress induce ER stress before proceeding to RGC death. ER stress is caused by the accumulation of misfolded or unfolded proteins within the ER lumen. The excess ER stress leads to ER-stress-induced cell death, highlighting the possible mechanisms of neurodegenerative diseases, such as Alzheimer disease, amyotrophic lateral sclerosis, and Parkinson disease. This chapter introduces the involvement of ER stress in retinal cell death causing glaucoma and its therapeutic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aridor M, Balch WE (1999) Integration of endoplasmic reticulum signaling in health and disease. Nat Med 5(7):745–751

    Article  CAS  PubMed  Google Scholar 

  2. Harding HP, Calfon M, Urano F, Novoa I, Ron D (2002) Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol 18:575–599

    Article  CAS  PubMed  Google Scholar 

  3. Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13(10):1211–1233

    Article  CAS  PubMed  Google Scholar 

  4. Bando Y, Onuki R, Katayama T, Manabe T, Kudo T, Taira K, Tohyama M (2005) Double-strand RNA dependent protein kinase (PKR) is involved in the extrastriatal degeneration in Parkinson’s disease and Huntington’s disease. Neurochem Int 46(1):11–18

    Article  CAS  PubMed  Google Scholar 

  5. Gale M Jr, Katze MG (1998) Molecular mechanisms of interferon resistance mediated by viral-directed inhibition of PKR, the interferon-induced protein kinase. Pharmacol Ther 78(1):29–46

    Article  CAS  PubMed  Google Scholar 

  6. Lee AS (2001) The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci 26(8):504–510

    Article  CAS  PubMed  Google Scholar 

  7. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11(4):381–389

    Article  CAS  PubMed  Google Scholar 

  8. Pahl HL (1999) Signal transduction from the endoplasmic reticulum to the cell nucleus. Physiol Rev 79(3):683–701

    CAS  PubMed  Google Scholar 

  9. Bonne C, Muller A, Villain M (1998) Free radicals in retinal ischemia. Gen Pharmacol 30(3):275–280

    Article  CAS  PubMed  Google Scholar 

  10. Dreyer EB (1998) A proposed role for excitotoxicity in glaucoma. J Glaucoma 7(1):62–67

    Article  CAS  PubMed  Google Scholar 

  11. Neufeld AH (1999) Nitric oxide: a potential mediator of retinal ganglion cell damage in glaucoma. Surv Ophthalmol 43(Suppl 1):S129–S135

    Article  PubMed  Google Scholar 

  12. McKinnon SJ (1997) Glaucoma, apoptosis, and neuroprotection. Curr Opin Ophthalmol 8(2):28–37

    Article  CAS  PubMed  Google Scholar 

  13. Adachi K, Kashii S, Masai H, Ueda M, Morizane C, Kaneda K, Kume T, Akaike A, Honda Y (1998) Mechanism of the pathogenesis of glutamate neurotoxicity in retinal ischemia. Graefes Arch Clin Exp Ophthalmol 236(10):766–774

    Article  CAS  PubMed  Google Scholar 

  14. Sucher NJ, Lipton SA, Dreyer EB (1997) Molecular basis of glutamate toxicity in retinal ganglion cells. Vision Res 37(24):3483–3493. doi:10.1016/S0042-6989(97)00047-3

    Article  CAS  PubMed  Google Scholar 

  15. Uehara T, Nakamura T, Yao D, Shi ZQ, Gu Z, Ma Y, Masliah E, Nomura Y, Lipton SA (2006) S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441(7092):513–517

    Article  CAS  PubMed  Google Scholar 

  16. Sabel BA, Sautter J, Stoehr T, Siliprandi R (1995) A behavioral model of excitotoxicity: retinal degeneration, loss of vision, and subsequent recovery after intraocular NMDA administration in adult rats. Exp Brain Res 106(1):93–105

    Article  CAS  PubMed  Google Scholar 

  17. Siliprandi R, Canella R, Carmignoto G, Schiavo N, Zanellato A, Zanoni R, Vantini G (1992) N-methyl-D-aspartate-induced neurotoxicity in the adult rat retina. Vis Neurosci 8(6):567–573

    Article  CAS  PubMed  Google Scholar 

  18. Hara A, Niwa M, Kumada M, Kitaori N, Yamamoto T, Kozawa O, Mori H (2004) Fragmented DNA transport in dendrites of retinal neurons during apoptotic cell death. Brain Res 1007(1–2):183–187

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Schlamp CL, Nickells RW (1999) Experimental induction of retinal ganglion cell death in adult mice. Invest Ophthalmol Vis Sci 40(5):1004–1008

    CAS  PubMed  Google Scholar 

  20. Fukunaga K, Soderling TR, Miyamoto E (1992) Activation of Ca2+/calmodulin-dependent protein kinase II and protein kinase C by glutamate in cultured rat hippocampal neurons. J Biol Chem 267(31):22527–22533

    CAS  PubMed  Google Scholar 

  21. Iwawaki T, Akai R, Kohno K, Miura M (2004) A transgenic mouse model for monitoring endoplasmic reticulum stress. Nat Med 10(1):98–102

    Article  CAS  PubMed  Google Scholar 

  22. Lam TT, Siew E, Chu R, Tso MO (1997) Ameliorative effect of MK-801 on retinal ischemia. J Ocul Pharmacol Ther 13(2):129–137

    Article  CAS  PubMed  Google Scholar 

  23. Li WW, Alexandre S, Cao X, Lee AS (1993) Transactivation of the grp78 promoter by Ca2+ depletion. A comparative analysis with A23187 and the endoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin. J Biol Chem 268(16):12003–12009

    CAS  PubMed  Google Scholar 

  24. Oyadomari S, Araki E, Mori M (2002) Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 7(4):335–345

    Article  CAS  PubMed  Google Scholar 

  25. Laabich A, Li G, Cooper NG (2001) Characterization of apoptosis-genes associated with NMDA mediated cell death in the adult rat retina. Brain Res Mol Brain Res 91(1–2):34–42

    Article  CAS  PubMed  Google Scholar 

  26. Awai M, Koga T, Inomata Y, Oyadomari S, Gotoh T, Mori M, Tanihara H (2006) NMDA-induced retinal injury is mediated by an endoplasmic reticulum stress-related protein, CHOP/GADD153. J Neurochem 96(1):43–52

    Article  CAS  PubMed  Google Scholar 

  27. Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90(3):262–267. doi:10.1136/bjo.2005.081224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Mozaffarieh M, Grieshaber MC, Flammer J (2008) Oxygen and blood flow: players in the pathogenesis of glaucoma. Mol Vis 14:224–233

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Tomita G (2000) The optic nerve head in normal-tension glaucoma. Curr Opin Ophthalmol 11(2):116–120

    Article  CAS  PubMed  Google Scholar 

  30. McKinnon SJ, Lehman DM, Kerrigan-Baumrind LA, Merges CA, Pease ME, Kerrigan DF, Ransom NL, Tahzib NG, Reitsamer HA, Levkovitch-Verbin H, Quigley HA, Zack DJ (2002) Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. Invest Ophthalmol Vis Sci 43(4):1077–1087

    PubMed  Google Scholar 

  31. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Collaborative normal-tension glaucoma study group (1998) Am J Ophthalmol 126(4):498–505. doi:S0002939498002724

    Google Scholar 

  32. Bayer AU, Ferrari F, Erb C (2002) High occurrence rate of glaucoma among patients with Alzheimer’s disease. Eur Neurol 47(3):165–168

    Article  CAS  PubMed  Google Scholar 

  33. Yoneda S, Hara H, Hirata A, Fukushima M, Inomata Y, Tanihara H (2005) Vitreous fluid levels of beta-amyloid((1-42)) and tau in patients with retinal diseases. Jpn J Ophthalmol 49(2):106–108

    Article  CAS  PubMed  Google Scholar 

  34. Shimazawa M, Inokuchi Y, Okuno T, Nakajima Y, Sakaguchi G, Kato A, Oku H, Sugiyama T, Kudo T, Ikeda T, Takeda M, Hara H (2008) Reduced retinal function in amyloid precursor protein-over-expressing transgenic mice via attenuating glutamate-N-methyl-d-aspartate receptor signaling. J Neurochem 107(1):279–290. doi:10.1111/j.1471-4159.2008.05606.x, JNC5606 [pii]

    Article  CAS  PubMed  Google Scholar 

  35. Yamamoto R, Yoneda S, Hara H (2004) Neuroprotective effects of beta-secretase inhibitors against rat retinal ganglion cell death. Neurosci Lett 370(1):61–64

    Article  CAS  PubMed  Google Scholar 

  36. Guo L, Salt TE, Luong V, Wood N, Cheung W, Maass A, Ferrari G, Russo-Marie F, Sillito AM, Cheetham ME, Moss SE, Fitzke FW, Cordeiro MF (2007) Targeting amyloid-beta in glaucoma treatment. Proc Natl Acad Sci U S A 104(33):13444–13449. doi:10.1073/pnas.0703707104, 0703707104 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Goldblum D, Kipfer-Kauer A, Sarra GM, Wolf S, Frueh BE (2007) Distribution of amyloid precursor protein and amyloid-beta immunoreactivity in DBA/2J glaucomatous mouse retinas. Invest Ophthalmol Vis Sci 48(11):5085–5090. doi:10.1167/iovs.06-1249

    Article  PubMed  Google Scholar 

  38. Ito Y, Shimazawa M, Tsuruma K, Mayama C, Ishii K, Onoe H, Aihara M, Araie M, Hara H (2012) Induction of amyloid-beta(1-42) in the retina and optic nerve head of chronic ocular hypertensive monkeys. Mol Vis 18:2647–2657

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Soejima N, Ohyagi Y, Nakamura N, Himeno E, Iinuma KM, Sakae N, Yamasaki R, Tabira T, Murakami K, Irie K, Kinoshita N, LaFerla FM, Kiyohara Y, Iwaki T, Kira J (2013) Intracellular accumulation of toxic turn amyloid-beta is associated with endoplasmic reticulum stress in Alzheimer’s disease. Curr Alzheimer Res 10(1):11–20

    CAS  PubMed  Google Scholar 

  40. Lee JH, Won SM, Suh J, Son SJ, Moon GJ, Park UJ, Gwag BJ (2010) Induction of the unfolded protein response and cell death pathway in Alzheimer’s disease, but not in aged Tg2576 mice. Exp Mol Med 42(5):386–394. doi:10.3858/emm.2010.42.5.040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Hosoi T, Ozawa K (2012) Molecular approaches to the treatment, prophylaxis, and diagnosis of Alzheimer’s disease: endoplasmic reticulum stress and immunological stress in pathogenesis of Alzheimer’s disease. J Pharmacol Sci 118(3):319–324

    Article  CAS  PubMed  Google Scholar 

  42. Scheper W, Nijholt DA, Hoozemans JJ (2011) The unfolded protein response and proteostasis in Alzheimer disease: preferential activation of autophagy by endoplasmic reticulum stress. Autophagy 7(8):910–911

    Article  PubMed Central  PubMed  Google Scholar 

  43. Doh SH, Kim JH, Lee KM, Park HY, Park CK (2010) Retinal ganglion cell death induced by endoplasmic reticulum stress in a chronic glaucoma model. Brain Res 1308:158–166. doi:10.1016/j.brainres.2009.10.025

    Article  CAS  PubMed  Google Scholar 

  44. Yang X, Luo C, Cai J, Powell DW, Yu D, Kuehn MH, Tezel G (2011) Neurodegenerative and inflammatory pathway components linked to TNF-alpha/TNFR1 signaling in the glaucomatous human retina. Invest Ophthalmol Vis Sci 52(11):8442–8454. doi:10.1167/iovs.11-8152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Gupta N, Yucel YH (2003) Brain changes in glaucoma. Eur J Ophthalmol 13(Suppl 3):S32–S35

    PubMed  Google Scholar 

  46. Vrabec JP, Levin LA (2007) The neurobiology of cell death in glaucoma. Eye (Lond) 21(Suppl 1):S11–S14. doi:10.1038/sj.eye.6702880

    Article  CAS  Google Scholar 

  47. Yucel Y, Gupta N (2008) Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. Prog Brain Res 173:465–478. doi:10.1016/S0079-6123(08)01132-1

    Article  PubMed  Google Scholar 

  48. Weber AJ, Chen H, Hubbard WC, Kaufman PL (2000) Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus. Invest Ophthalmol Vis Sci 41(6):1370–1379

    CAS  PubMed  Google Scholar 

  49. Ito Y, Shimazawa M, Chen YN, Tsuruma K, Yamashima T, Araie M, Hara H (2009) Morphological changes in the visual pathway induced by experimental glaucoma in Japanese monkeys. Exp Eye Res 89(2):246–255. doi:10.1016/j.exer.2009.03.013

    Article  CAS  PubMed  Google Scholar 

  50. Shimazawa M, Ito Y, Inokuchi Y, Yamanaka H, Nakanishi T, Hayashi T, Ji B, Higuchi M, Suhara T, Imamura K, Araie M, Watanabe Y, Onoe H, Hara H (2012) An alteration in the lateral geniculate nucleus of experimental glaucoma monkeys: in vivo positron emission tomography imaging of glial activation. PLoS One 7(1):e30526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Jones EG, Hendry SH (1989) Differential calcium binding protein immunoreactivity distinguishes classes of relay neurons in monkey thalamic nuclei. Eur J Neurosci 1(3):222–246

    Article  PubMed  Google Scholar 

  52. Johnson JK, Casagrande VA (1995) Distribution of calcium-binding proteins within the parallel visual pathways of a primate (Galago crassicaudatus). J Comp Neurol 356(2):238–260. doi:10.1002/cne.903560208

    Article  CAS  PubMed  Google Scholar 

  53. Le Vay S (1971) On the neurons and synapses of the lateral geniculate nucleus of the monkey, and the effects of eye enucleation. Z Zellforsch Mikrosk Anat 113(3):396–419

    Article  PubMed  Google Scholar 

  54. Somogyi J, Eysel U, Hamori J (1987) A quantitative study of morphological reorganization following chronic optic deafferentation in the adult cat dorsal lateral geniculate nucleus. J Comp Neurol 255(3):341–350. doi:10.1002/cne.902550303

    Article  CAS  PubMed  Google Scholar 

  55. Salt TE (1986) Mediation of thalamic sensory input by both NMDA receptors and non-NMDA receptors. Nature 322(6076):263–265. doi:10.1038/322263a0

    Article  CAS  PubMed  Google Scholar 

  56. Salt TE (1987) Excitatory amino acid receptors and synaptic transmission in the rat ventrobasal thalamus. J Physiol 391:499–510

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Scharfman HE, Lu SM, Guido W, Adams PR, Sherman SM (1990) N-methyl-D-aspartate receptors contribute to excitatory postsynaptic potentials of cat lateral geniculate neurons recorded in thalamic slices. Proc Natl Acad Sci U S A 87(12):4548–4552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Jones EG, Tighilet B, Tran BV, Huntsman MM (1998) Nucleus- and cell-specific expression of NMDA and non-NMDA receptor subunits in monkey thalamus. J Comp Neurol 397(3):371–393

    Article  CAS  PubMed  Google Scholar 

  59. Yucel YH, Gupta N, Zhang Q, Mizisin AP, Kalichman MW, Weinreb RN (2006) Memantine protects neurons from shrinkage in the lateral geniculate nucleus in experimental glaucoma. Arch Ophthalmol 124(2):217–225. doi:10.1001/archopht.124.2.217

    Article  CAS  PubMed  Google Scholar 

  60. Ito Y, Nakamura S, Tanaka H, Shimazawa M, Araie M, Hara H (2008) Memantine protects against secondary neuronal degeneration in lateral geniculate nucleus and superior colliculus after retinal damage in mice. CNS Neurosci Ther 14(3):192–202. doi:10.1111/j.1755-5949.2008.00050.x

    Article  CAS  PubMed  Google Scholar 

  61. Lipton SA, Singel DJ, Stamler JS (1994) Nitric oxide in the central nervous system. Prog Brain Res 103:359–364

    Article  CAS  PubMed  Google Scholar 

  62. Wang X, Sam-Wah Tay S, Ng YK (2000) Nitric oxide, microglial activities and neuronal cell death in the lateral geniculate nucleus of glaucomatous rats. Brain Res 878(1–2):136–147

    Article  CAS  PubMed  Google Scholar 

  63. Nucci C, Morrone L, Rombola L, Nistico R, Piccirilli S, Cerulli L (2003) Multifaceted roles of nitric oxide in the lateral geniculate nucleus: from visual signal transduction to neuronal apoptosis. Toxicol Lett 139(2–3):163–173

    Article  CAS  PubMed  Google Scholar 

  64. Ilieva EV, Ayala V, Jove M, Dalfo E, Cacabelos D, Povedano M, Bellmunt MJ, Ferrer I, Pamplona R, Portero-Otin M (2007) Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain 130(Pt 12):3111–3123

    Article  PubMed  Google Scholar 

  65. Okada K, Minamino T, Tsukamoto Y, Liao Y, Tsukamoto O, Takashima S, Hirata A, Fujita M, Nagamachi Y, Nakatani T, Yutani C, Ozawa K, Ogawa S, Tomoike H, Hori M, Kitakaze M (2004) Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation 110(6):705–712

    Article  PubMed  Google Scholar 

  66. Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7(12):1013–1030

    Article  CAS  PubMed  Google Scholar 

  67. Ito Y, Nakamura S, Tanaka H, Tsuruma K, Shimazawa M, Araie M, Hara H (2010) Lomerizine, a Ca2+ channel blocker, protects against neuronal degeneration within the visual center of the brain after retinal damage in mice. CNS Neurosci Ther 16(2):103–114. doi:10.1111/j.1755-5949.2009.00081.x

    Article  PubMed  Google Scholar 

  68. Ito Y, Shimazawa M, Inokuchi Y, Yamanaka H, Tsuruma K, Imamura K, Onoe H, Watanabe Y, Aihara M, Araie M, Hara H (2011) Involvement of endoplasmic reticulum stress on neuronal cell death in the lateral geniculate nucleus in the monkey glaucoma model. Eur J Neurosci 33(5):843–855. doi:10.1111/j.1460-9568.2010.07578.x

    Article  PubMed  Google Scholar 

  69. Srivastava SP, Kumar KU, Kaufman RJ (1998) Phosphorylation of eukaryotic translation initiation factor 2 mediates apoptosis in response to activation of the double-stranded RNA-dependent protein kinase. J Biol Chem 273(4):2416–2423

    Article  CAS  PubMed  Google Scholar 

  70. Martin LJ, Kaiser A, Yu JW, Natale JE, Al-Abdulla NA (2001) Injury-induced apoptosis of neurons in adult brain is mediated by p53-dependent and p53-independent pathways and requires Bax. J Comp Neurol 433(3):299–311

    Article  CAS  PubMed  Google Scholar 

  71. Martin LJ, Price AC, McClendon KB, Al-Abdulla NA, Subramaniam JR, Wong PC, Liu Z (2003) Early events of target deprivation/axotomy-induced neuronal apoptosis in vivo: oxidative stress, DNA damage, p53 phosphorylation and subcellular redistribution of death proteins. J Neurochem 85(1):234–247

    Article  CAS  PubMed  Google Scholar 

  72. Repici M, Atzori C, Migheli A, Vercelli A (2003) Molecular mechanisms of neuronal death in the dorsal lateral geniculate nucleus following visual cortical lesions. Neuroscience 117(4):859–867

    Article  CAS  PubMed  Google Scholar 

  73. Shimazawa M, Ito Y, Inokuchi Y, Hara H (2007) Involvement of double-stranded RNA-dependent protein kinase in ER stress-induced retinal neuron damage. Invest Ophthalmol Vis Sci 48(8):3729–3736. doi:10.1167/iovs.06-1122

    Article  PubMed  Google Scholar 

  74. Kudo T, Kanemoto S, Hara H, Morimoto N, Morihara T, Kimura R, Tabira T, Imaizumi K, Takeda M (2008) A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ 15(2):364–375. doi:10.1038/sj.cdd.4402276

    Article  CAS  PubMed  Google Scholar 

  75. Oida Y, Izuta H, Oyagi A, Shimazawa M, Kudo T, Imaizumi K, Hara H (2008) Induction of BiP, an ER-resident protein, prevents the neuronal death induced by transient forebrain ischemia in gerbil. Brain Res 1208:217–224. doi:10.1016/j.brainres.2008.02.068

    Article  CAS  PubMed  Google Scholar 

  76. Inokuchi Y, Nakajima Y, Shimazawa M, Kurita T, Kubo M, Saito A, Sajiki H, Kudo T, Aihara M, Imaizumi K, Araie M, Hara H (2009) Effect of an inducer of BiP, a molecular chaperone, on endoplasmic reticulum (ER) stress-induced retinal cell death. Invest Ophthalmol Vis Sci 50(1):334–344. doi:10.1167/iovs.08-2123

    Article  PubMed  Google Scholar 

  77. Lee YK, Brewer JW, Hellman R, Hendershot LM (1999) BiP and immunoglobulin light chain cooperate to control the folding of heavy chain and ensure the fidelity of immunoglobulin assembly. Mol Biol Cell 10(7):2209–2219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. van de Put FH, Elliott AC (1997) The endoplasmic reticulum can act as a functional Ca2+ store in all subcellular regions of the pancreatic acinar cell. J Biol Chem 272(44):27764–27770

    Article  PubMed  Google Scholar 

  79. Lievremont JP, Rizzuto R, Hendershot L, Meldolesi J (1997) BiP, a major chaperone protein of the endoplasmic reticulum lumen, plays a direct and important role in the storage of the rapidly exchanging pool of Ca2+. J Biol Chem 272(49):30873–30879

    Article  CAS  PubMed  Google Scholar 

  80. Helenius A (1994) How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell 5(3):253–265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Kuznetsov G, Chen LB, Nigam SK (1997) Multiple molecular chaperones complex with misfolded large oligomeric glycoproteins in the endoplasmic reticulum. J Biol Chem 272(5):3057–3063

    Article  CAS  PubMed  Google Scholar 

  82. Klausner RD, Sitia R (1990) Protein degradation in the endoplasmic reticulum. Cell 62(4):611–614

    Article  CAS  PubMed  Google Scholar 

  83. Blond-Elguindi S, Cwirla SE, Dower WJ, Lipshutz RJ, Sprang SR, Sambrook JF, Gething MJ (1993) Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75(4):717–728

    Article  CAS  PubMed  Google Scholar 

  84. Knarr G, Gething MJ, Modrow S, Buchner J (1995) BiP binding sequences in antibodies. J Biol Chem 270(46):27589–27594

    Article  CAS  PubMed  Google Scholar 

  85. Knarr G, Modrow S, Todd A, Gething MJ, Buchner J (1999) BiP-binding sequences in HIV gp160. Implications for the binding specificity of bip. J Biol Chem 274(42):29850–29857

    Article  CAS  PubMed  Google Scholar 

  86. Brodsky JL, Werner ED, Dubas ME, Goeckeler JL, Kruse KB, McCracken AA (1999) The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct. J Biol Chem 274(6):3453–3460

    Article  CAS  PubMed  Google Scholar 

  87. Meerovitch K, Wing S, Goltzman D (1998) Proparathyroid hormone-related protein is associated with the chaperone protein BiP and undergoes proteasome-mediated degradation. J Biol Chem 273(33):21025–21030

    Article  CAS  PubMed  Google Scholar 

  88. Katayama T, Imaizumi K, Sato N, Miyoshi K, Kudo T, Hitomi J, Morihara T, Yoneda T, Gomi F, Mori Y, Nakano Y, Takeda J, Tsuda T, Itoyama Y, Murayama O, Takashima A, St George-Hyslop P, Takeda M, Tohyama M (1999) Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat Cell Biol 1(8):479–485. doi:10.1038/70265

    Article  CAS  PubMed  Google Scholar 

  89. Yu Z, Luo H, Fu W, Mattson MP (1999) The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp Neurol 155(2):302–314. doi:10.1006/exnr.1998.7002, S0014-4886(98)97002-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  90. Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T, Goldsmith PC, Ellerby LM, Ellerby HM, Bredesen DE (2002) Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 514(2–3):122–128, S0014579302022895 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Reddy RK, Mao C, Baumeister P, Austin RC, Kaufman RJ, Lee AS (2003) Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J Biol Chem 278(23):20915–20924

    Article  CAS  PubMed  Google Scholar 

  92. Weil M, Jacobson MD, Coles HS, Davies TJ, Gardner RL, Raff KD, Raff MC (1996) Constitutive expression of the machinery for programmed cell death. J Cell Biol 133(5):1053–1059

    Article  CAS  PubMed  Google Scholar 

  93. Taylor J, Gatchalian CL, Keen G, Rubin LL (1997) Apoptosis in cerebellar granule neurones: involvement of interleukin-1 beta converting enzyme-like proteases. J Neurochem 68(4):1598–1605

    Article  CAS  PubMed  Google Scholar 

  94. Inokuchi Y, Shimazawa M, Nakajima Y, Suemori S, Mishima S, Hara H (2006) Brazilian green propolis protects against retinal damage in vitro and in vivo. Evid Based Complement Alternat Med 3(1):71–77. doi:10.1093/ecam/nek005

    Article  PubMed Central  PubMed  Google Scholar 

  95. Shimazawa M, Inokuchi Y, Ito Y, Murata H, Aihara M, Miura M, Araie M, Hara H (2007) Involvement of ER stress in retinal cell death. Mol Vis 13:578–587

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28(1):41–51

    Article  CAS  PubMed  Google Scholar 

  97. Henneberry RC, Novelli A, Cox JA, Lysko PG (1989) Neurotoxicity at the N-methyl-D-aspartate receptor in energy-compromised neurons. An hypothesis for cell death in aging and disease. Ann N Y Acad Sci 568:225–233

    Article  CAS  PubMed  Google Scholar 

  98. Ubeda M, Habener JF (2000) CHOP gene expression in response to endoplasmic-reticular stress requires NFY interaction with different domains of a conserved DNA-binding element. Nucleic Acids Res 28(24):4987–4997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Foti DM, Welihinda A, Kaufman RJ, Lee AS (1999) Conservation and divergence of the yeast and mammalian unfolded protein response. Activation of specific mammalian endoplasmic reticulum stress element of the grp78/BiP promoter by yeast Hac1. J Biol Chem 274(43):30402–30409

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masamitsu Shimazawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Shimazawa, M., Hara, H. (2014). ER Stress. In: Nakazawa, T., Kitaoka, Y., Harada, T. (eds) Neuroprotection and Neuroregeneration for Retinal Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54965-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54965-9_5

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54964-2

  • Online ISBN: 978-4-431-54965-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics