Skip to main content

Neuroprotection by Endothelial Progenitor Cells for Retinal Degeneration

  • Chapter
  • First Online:
Neuroprotection and Neuroregeneration for Retinal Diseases
  • 761 Accesses

Abstract

Retinitis pigmentosa is an inherited eye disorder that leads to profound vision loss and is characterized by retinal neuron degeneration, fundus pigment changes, optic disc atrophy, and vasculature attenuation. Endothelial progenitor cells (EPCs), which contribute to angiogenesis, are categorized into two subpopulations according to their aldehyde dehydrogenase (ALDH) activity. Injection of EPCs with low ALDH activity (Alde-Low) revealed a greater ability for neuroprotection and vasoprotection compared with injection of EPCs with high ALDH activity in a mouse model of retinitis pigmentosa. However, EPCs do not possess direct neuroprotective or vasoprotective ability and must recruit other neuroprotective and vasoprotective cells. Alde-Low EPCs selectively recruited neuroprotective and vasoprotective F4/80+/Ly6c+ monocyte-derived macrophages from bone marrow through CCL2 secretion. F4/80+/Ly6c+ monocyte-derived macrophages from bone marrow were immature and revealed characteristics that differed from those of retinal residual microglia. CCR2 (the receptor for CCL2), neurotrophic factors, and anti-inflammatory mediators were highly expressed in migrated F4/80+/Ly6c+ monocyte-derived macrophages when compared with retinal residual microglia. These new findings suggest that novel therapies using EPCs may delay the progression of retinal degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809

    Article  CAS  PubMed  Google Scholar 

  2. Humphries P, Kenna P, Farrar GJ (1992) On the molecular genetics of retinitis pigmentosa. Science 256:804–808

    Article  CAS  PubMed  Google Scholar 

  3. Bramall AN, Wright AF, Jacobson SG, McInnes RR (2010) The genomic, biochemical, and cellular responses of the retina in inherited photoreceptor degenerations and prospects for the treatment of these disorders. Annu Rev Neurosci 33:441–472

    Article  CAS  PubMed  Google Scholar 

  4. Cideciyan AV (2010) Leber congenital amaurosis due to RPE65 mutations and its treatment with gene therapy. Prog Retin Eye Res 29:398–427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Frasson M, Picaud S, Leveillard T, Simonutti M, Mohand-Said S, Dreyfus H, Hicks D, Sabel J (1999) Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest Ophthalmol Vis Sci 40:2724–2734

    CAS  PubMed  Google Scholar 

  6. LaVail MM, Yasumura D, Matthes MT, Lau-Villacorta C, Unoki K, Sung CH, Steinberg RH (1998) Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci 39:592–602

    CAS  PubMed  Google Scholar 

  7. Inoue Y, Iriyama A, Ueno S, Takahashi H, Kondo M, Tamaki Y, Araie M, Yanagi Y (2007) Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Exp Eye Res 85:234–241

    Article  CAS  PubMed  Google Scholar 

  8. MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, Swaroop A, Sowden JC, Ali RR (2006) Retinal repair by transplantation of photoreceptor precursors. Nature 444:203–207

    Article  CAS  PubMed  Google Scholar 

  9. Otani A, Dorrell MI, Kinder K, Moreno SK, Nusinowitz S, Banin E, Heckenlively J, Friedlander M (2004) Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J Clin Invest 114:765–774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Meyer JS, Katz ML, Maruniak JA, Kirk MD (2006) Embryonic stem cell-derived neural progenitors incorporate into degenerating retina and enhance survival of host photoreceptors. Stem Cells 24:274–283

    Article  PubMed Central  PubMed  Google Scholar 

  11. Bartsch U, Oriyakhel W, Kenna PF, Linke S, Richard G, Petrowitz B, Humphries P, Farrar GJ, Ader M (2008) Retinal cells integrate into the outer nuclear layer and differentiate into mature photoreceptors after subretinal transplantation into adult mice. Exp Eye Res 86:691–700

    Article  CAS  PubMed  Google Scholar 

  12. Yang P, Seiler MJ, Aramant RB, Whittemore SR (2002) Differential lineage restriction of rat retinal progenitor cells in vitro and in vivo. J Neurosci Res 69:466–476

    Article  CAS  PubMed  Google Scholar 

  13. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  15. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923

    Article  CAS  PubMed  Google Scholar 

  16. Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T, Watanabe K, Sasai Y, Takahashi M (2009) In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci 122:3169–3179

    Article  CAS  PubMed  Google Scholar 

  17. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  CAS  PubMed  Google Scholar 

  18. Cancedda R, Bianchi G, Derubeis A, Quarto R (2003) Cell therapy for bone disease: a review of current status. Stem Cells 21:610–619

    Article  CAS  PubMed  Google Scholar 

  19. Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23:845–856

    Article  CAS  PubMed  Google Scholar 

  20. Chen Q, Long Y, Yuan X, Zou L, Sun J, Chen S, Perez-Polo JR, Yang K (2005) Protective effects of bone marrow stromal cell transplantation in injured rodent brain: synthesis of neurotrophic factors. J Neurosci Res 80:611–619

    Article  CAS  PubMed  Google Scholar 

  21. Nagano M, Kimura K, Yamashita T, Ohneda K, Nozawa D, Hamada H, Yoshikawa H, Ochiai N, Ohneda O (2010) Hypoxia responsive mesenchymal stem cells derived from human umbilical cord blood are effective for bone repair. Stem Cells Dev 19:1195–1210

    Article  CAS  PubMed  Google Scholar 

  22. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301

    Article  CAS  PubMed  Google Scholar 

  23. Sugitani S, Tsuruma K, Ohno Y, Kuse Y, Yamauchi M, Egashira Y, Yoshimura S, Shimazawa M, Iwama T, Hara H (2013) The potential neuroprotective effect of human adipose stem cells conditioned medium against light-induced retinal damage. Exp Eye Res 116C:254–264

    Article  Google Scholar 

  24. Nagano M, Yamashita T, Hamada H, Ohneda K, Kimura K, Nakagawa T, Shibuya M, Yoshikawa H, Ohneda O (2007) Identification of functional endothelial progenitor cells suitable for the treatment of ischemic tissue using human umbilical cord blood. Blood 110:151–160

    Article  CAS  PubMed  Google Scholar 

  25. Nakamura K, Tsurushima H, Marushima A, Nagano M, Yamashita T, Suzuki K, Ohneda O, Matsumura A (2012) A subpopulation of endothelial progenitor cells with low aldehyde dehydrogenase activity attenuates acute ischemic brain injury in rats. Biochem Biophys Res Commun 418:87–92

    Article  CAS  PubMed  Google Scholar 

  26. Akimoto K, Kimura K, Nagano M, Takano S, To’a Salazar G, Yamashita T, Ohneda O (2013) Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation. Stem Cells Dev 22:1370–1386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Otani A, Kinder K, Ewalt K, Otero FJ, Schimmel P, Friedlander M (2002) Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nat Med 8:1004–1010

    Article  CAS  PubMed  Google Scholar 

  28. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  29. Gehling UM, Ergun S, Schumacher U, Wagener C, Pantel K, Otte M, Schuch G, Schafhausen P, Mende T, Kilic N et al (2000) In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95:3106–3112

    CAS  PubMed  Google Scholar 

  30. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA et al (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958

    CAS  PubMed  Google Scholar 

  31. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760

    Article  CAS  PubMed  Google Scholar 

  33. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR et al (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367

    CAS  PubMed  Google Scholar 

  34. Quirici N, Soligo D, Caneva L, Servida F, Bossolasco P, Deliliers GL (2001) Differentiation and expansion of endothelial cells from human bone marrow CD133(+) cells. Br J Haematol 115:186–194

    Article  CAS  PubMed  Google Scholar 

  35. Murohara T, Ikeda H, Duan J, Shintani S, Sasaki K, Eguchi H, Onitsuka I, Matsui K, Imaizumi T (2000) Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 105:1527–1536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9:702–712

    Article  CAS  PubMed  Google Scholar 

  37. Hristov M, Erl W, Weber PC (2003) Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol 23:1185–1189

    Article  CAS  PubMed  Google Scholar 

  38. Fan Y, Shen F, Frenzel T, Zhu W, Ye J, Liu J, Chen Y, Su H, Young WL, Yang GY (2010) Endothelial progenitor cell transplantation improves long-term stroke outcome in mice. Ann Neurol 67:488–497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Ohta T, Kikuta K, Imamura H, Takagi Y, Nishimura M, Arakawa Y, Hashimoto N, Nozaki K (2006) Administration of ex vivo-expanded bone marrow-derived endothelial progenitor cells attenuates focal cerebral ischemia-reperfusion injury in rats. Neurosurgery 59:679–686

    Article  PubMed  Google Scholar 

  40. Jeong JO, Kim MO, Kim H, Lee MY, Kim SW, Ii M, Lee JU, Lee J, Choi YJ, Cho HJ et al (2009) Dual angiogenic and neurotrophic effects of bone marrow-derived endothelial progenitor cells on diabetic neuropathy. Circulation 119:699–708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Yu DY, Cringle SJ, Su EN, Yu PK (2000) Intraretinal oxygen levels before and after photoreceptor loss in the RCS rat. Invest Ophthalmol Vis Sci 41:3999–4006

    CAS  PubMed  Google Scholar 

  42. Yu DY, Cringle S, Valter K, Walsh N, Lee D, Stone J (2004) Photoreceptor death, trophic factor expression, retinal oxygen status, and photoreceptor function in the P23H rat. Invest Ophthalmol Vis Sci 45:2013–2019

    Article  PubMed  Google Scholar 

  43. Fukuda S, Nagano M, Yamashita T et al (2013) Functional endothelial progenitor cells selectively recruit neurovascular protective monocyte-derived F4/80/Ly6c macrophages in a mouse model of retinal degeneration. Stem Cells 31:2149–2161

    Article  CAS  PubMed  Google Scholar 

  44. Bagri A, Gurney T, He X, Zou YR, Littman DR, Tessier-Lavigne M, Pleasure SJ (2002) The chemokine SDF1 regulates migration of dentate granule cells. Development 129:4249–4260

    CAS  PubMed  Google Scholar 

  45. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382:635–638

    Article  CAS  PubMed  Google Scholar 

  46. van der Strate BW, Popa ER, Schipper M, Brouwer LA, Hendriks M, Harmsen MC, van Luyn MJ (2007) Circulating human CD34+ progenitor cells modulate neovascularization and inflammation in a nude mouse model. J Mol Cell Cardiol 42:1086–1097

    Article  PubMed  Google Scholar 

  47. Suh W, Kim KL, Kim JM, Shin IS, Lee YS, Lee JY, Jang HS, Lee JS, Byun J, Choi JH et al (2005) Transplantation of endothelial progenitor cells accelerates dermal wound healing with increased recruitment of monocytes/macrophages and neovascularization. Stem Cells 23:1571–1578

    Article  PubMed  Google Scholar 

  48. Chen L, Wu W, Dentchev T, Zeng Y, Wang J, Tsui I, Tobias JW, Bennett J, Baldwin D, Dunaief JL (2004) Light damage induced changes in mouse retinal gene expression. Exp Eye Res 79:239–247

    Article  CAS  PubMed  Google Scholar 

  49. Meleth AD, Agron E, Chan CC, Reed GF, Arora K, Byrnes G, Csaky KG, Ferris FL 3rd, Chew EY (2005) Serum inflammatory markers in diabetic retinopathy. Invest Ophthalmol Vis Sci 46:4295–4301

    Article  PubMed  Google Scholar 

  50. Jo N, Wu GS, Rao NA (2003) Upregulation of chemokine expression in the retinal vasculature in ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 44:4054–4060

    Article  PubMed  Google Scholar 

  51. Nakazawa T, Hisatomi T, Nakazawa C, Noda K, Maruyama K, She H, Matsubara A, Miyahara S, Nakao S, Yin Y et al (2007) Monocyte chemoattractant protein 1 mediates retinal detachment-induced photoreceptor apoptosis. Proc Natl Acad Sci U S A 104:2425–2430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Zeng HY, Zhu XA, Zhang C, Yang LP, Wu LM, Tso MO (2005) Identification of sequential events and factors associated with microglial activation, migration, and cytotoxicity in retinal degeneration in rd mice. Invest Ophthalmol Vis Sci 46:2992–2999

    Article  PubMed  Google Scholar 

  53. Zhang Y, Ingram DA, Murphy MP, Saadatzadeh MR, Mead LE, Prater DN, Rehman J (2009) Release of proinflammatory mediators and expression of proinflammatory adhesion molecules by endothelial progenitor cells. Am J Physiol Heart Circ Physiol 296:H1675–H1682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Madrigal JL, Leza JC, Polak P, Kalinin S, Feinstein DL (2009) Astrocyte-derived MCP-1 mediates neuroprotective effects of noradrenaline. J Neurosci 29:263–267

    Article  CAS  PubMed  Google Scholar 

  55. Eugenin EA, D’Aversa TG, Lopez L, Calderon TM, Berman JW (2003) MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis. J Neurochem 85:1299–1311

    Article  CAS  PubMed  Google Scholar 

  56. van Rooijen N, Sanders A, van den Berg TK (1996) Apoptosis of macrophages induced by liposome-mediated intracellular delivery of clodronate and propamidine. J Immunol Methods 193:93–99

    Article  PubMed  Google Scholar 

  57. Sasahara M, Otani A, Oishi A, Kojima H, Yodoi Y, Kameda T, Nakamura H, Yoshimura N (2008) Activation of bone marrow-derived microglia promotes photoreceptor survival in inherited retinal degeneration. Am J Pathol 172:1693–1703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82

    Article  CAS  PubMed  Google Scholar 

  59. Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, Streit WJ, Salafranca MN, Adhikari S, Thompson DA et al (1998) Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci U S A 95:10896–10901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. London A, Itskovich E, Benhar I, Kalchenko V, Mack M, Jung S, Schwartz M (2011) Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages. J Exp Med 208:23–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Donnelly DJ, Longbrake EE, Shawler TM, Kigerl KA, Lai W, Tovar CA, Ransohoff RM, Popovich PG (2011) Deficient CX3CR1 signaling promotes recovery after mouse spinal cord injury by limiting the recruitment and activation of Ly6Clo/iNOS+ macrophages. J Neurosci 31:9910–9922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Lu H, Huang D, Saederup N, Charo IF, Ransohoff RM, Zhou L (2011) Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J 25:358–369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Lu H, Huang D, Ransohoff RM, Zhou L (2011) Acute skeletal muscle injury: CCL2 expression by both monocytes and injured muscle is required for repair. FASEB J 25:3344–3355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, Rolls A, Mack M, Pluchino S, Martino G et al (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6:e1000113

    Article  PubMed Central  PubMed  Google Scholar 

  65. Abu el-Asrar AM, Van Damme J, Put W, Veckeneer M, Dralands L, Billiau A, Missotten L (1997) Monocyte chemotactic protein-1 in proliferative vitreoretinal disorders. Am J Ophthalmol 123:599–606

    CAS  PubMed  Google Scholar 

  66. Capeans C, De Rojas MV, Lojo S, Salorio MS (1998) C-C chemokines in the vitreous of patients with proliferative vitreoretinopathy and proliferative diabetic retinopathy. Retina 18:546–550

    CAS  PubMed  Google Scholar 

  67. Kaneko H, Nishiguchi KM, Nakamura M, Kachi S, Terasaki H (2008) Retardation of photoreceptor degeneration in the detached retina of rd1 mouse. Invest Ophthalmol Vis Sci 49:781–787

    Article  PubMed  Google Scholar 

  68. Storms RW, Trujillo AP, Springer JB, Shah L, Colvin OM, Ludeman SM, Smith C (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci U S A 96:9118–9123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Russo JE, Hilton J (1988) Characterization of cytosolic aldehyde dehydrogenase from cyclophosphamide resistant L1210 cells. Cancer Res 48:2963–2968

    CAS  PubMed  Google Scholar 

  70. Labrecque J, Bhat PV, Lacroix A (1993) Purification and partial characterization of a rat kidney aldehyde dehydrogenase that oxidizes retinal to retinoic acid. Biochem Cell Biol 71:85–89

    Article  CAS  PubMed  Google Scholar 

  71. Russo JE, Hilton J, Colvin OM (1989) The role of aldehyde dehydrogenase isozymes in cellular resistance to the alkylating agent cyclophosphamide. Prog Clin Biol Res 290:65–79

    CAS  PubMed  Google Scholar 

  72. Armstrong L, Stojkovic M, Dimmick I, Ahmad S, Stojkovic P, Hole N, Lako M (2004) Phenotypic characterization of murine primitive hematopoietic progenitor cells isolated on basis of aldehyde dehydrogenase activity. Stem Cells 22:1142–1151

    Article  PubMed  Google Scholar 

  73. Hess DA, Meyerrose TE, Wirthlin L, Craft TP, Herrbrich PE, Creer MH, Nolta JA (2004) Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood 104:1648–1655

    Article  CAS  PubMed  Google Scholar 

  74. Corti S, Locatelli F, Papadimitriou D, Donadoni C, Salani S, Del Bo R, Strazzer S, Bresolin N, Comi GP (2006) Identification of a primitive brain-derived neural stem cell population based on aldehyde dehydrogenase activity. Stem Cells 24:975–985

    Article  CAS  PubMed  Google Scholar 

  75. Gentry T, Foster S, Winstead L, Deibert E, Fiordalisi M, Balber A (2007) Simultaneous isolation of human BM hematopoietic, endothelial and mesenchymal progenitor cells by flow sorting based on aldehyde dehydrogenase activity: implications for cell therapy. Cytotherapy 9:259–274

    Article  CAS  PubMed  Google Scholar 

  76. Estes BT, Wu AW, Storms RW, Guilak F (2006) Extended passaging, but not aldehyde dehydrogenase activity, increases the chondrogenic potential of human adipose-derived adult stem cells. J Cell Physiol 209:987–995

    Article  CAS  PubMed  Google Scholar 

  77. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W et al (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402–1416

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Research Grant from the Study Group on Chorioretinal Degeneration and Optic Atrophy, the Ministry of Health, Labor and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Fukuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Fukuda, S. (2014). Neuroprotection by Endothelial Progenitor Cells for Retinal Degeneration. In: Nakazawa, T., Kitaoka, Y., Harada, T. (eds) Neuroprotection and Neuroregeneration for Retinal Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54965-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54965-9_22

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54964-2

  • Online ISBN: 978-4-431-54965-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics