Skip to main content

Roles of the Retinal Pigment Epithelium in Neuroprotection

  • Chapter
  • First Online:
Book cover Neuroprotection and Neuroregeneration for Retinal Diseases
  • 779 Accesses

Abstract

The retinal pigment epithelium (RPE), located between the photoreceptors and Bruch’s membrane, is a vital tissue for the maintenance of photoreceptor functions. Numerous proteins expressed in the RPE regulate the transport of nutrients and waste products to and from the photoreceptors, which contributes to phagocytosis of shed photoreceptor outer segments and protects from the excessive light and oxygen reactive species to maintain retinal homeostasis. During aging, the RPE is observed to undergo characteristic changes including cell loss, loss of intact melanin granules, metabolic changes, and the intracellular accumulation of lipofuscin. Those changes adversely affect the RPE functions and associate with various diseases of the neural retina and the choroid. Given a number of studies reporting the RPE functions which serve for the retina and the choroid, it is essential to understand the physiological functions of the RPE in order to decipher disease- and age-related changes in vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zinn K, Benjamin-Henkind J (1979) Anatomy of the human retinal pigment epithelium. In: The retinal pigment epithelium. Harvard University Press, Cambridge, pp 3–31

    Google Scholar 

  2. Bok D (1993) The retinal pigment epithelium: a versatile partner in vision. J Cell Sci Suppl 17:189–195

    Article  CAS  PubMed  Google Scholar 

  3. Marmorstein AD (2001) The polarity of the retinal pigment epithelium. Traffic 2(12):867–872

    Article  CAS  PubMed  Google Scholar 

  4. Marmorstein AD, Finnemann SC, Bonilha VL, Rodriguez-Boulan E (1998) Morphogenesis of the retinal pigment epithelium: toward understanding retinal degenerative diseases. Ann N Y Acad Sci 857:1–12

    Article  CAS  PubMed  Google Scholar 

  5. Schraermeyer U, Heimann K (1999) Current understanding on the role of retinal pigment epithelium and its pigmentation. Pigment Cell Res 12(4):219–236

    Article  CAS  PubMed  Google Scholar 

  6. Feeney L (1978) Lipofuscin and melanin of human retinal pigment epithelium. Fluorescence, enzyme cytochemical, and ultrastructural studies. Invest Ophthalmol Vis Sci 17(7):583–600

    CAS  PubMed  Google Scholar 

  7. Rozanowska M, Sarna T, Land EJ, Truscott TG (1999) Free radical scavenging properties of melanin interaction of eu- and pheo-melanin models with reducing and oxidising radicals. Free Radic Biol Med 26(5–6):518–525

    Article  CAS  PubMed  Google Scholar 

  8. Samuelson DA, Smith P, Ulshafer RJ, Hendricks DG, Whitley RD, Hendricks H, Leone NC (1993) X-ray microanalysis of ocular melanin in pigs maintained on normal and low zinc diets. Exp Eye Res 56(1):63–70. doi:10.1006/exer.1993.1009

    Article  CAS  PubMed  Google Scholar 

  9. Kennedy CJ, Rakoczy PE, Constable IJ (1995) Lipofuscin of the retinal pigment epithelium: a review. Eye 9(Pt 6):763–771. doi:10.1038/eye.1995.192

    Article  PubMed  Google Scholar 

  10. Sparrow JR, Boulton M (2005) RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 80(5):595–606. doi:10.1016/j.exer.2005.01.007

    Article  CAS  PubMed  Google Scholar 

  11. Strehler BL (1964) On the histochemistry and ultrastructure of age pigment. Adv Gerontol Res 21:343–384

    CAS  PubMed  Google Scholar 

  12. Marmor MF (1990) Control of subretinal fluid: experimental and clinical studies. Eye 4(Pt 2):340–344. doi:10.1038/eye.1990.46

    Article  PubMed  Google Scholar 

  13. Hughes BA, Gallemore RP, Miller SS (1998) Transport mechanisms in the retinal pigment epithelium. In: Marmor MF, Wolfensberger TJ (eds) The retinal pigment epithelium: function and disease. Oxford University Press, New York, pp 103–134

    Google Scholar 

  14. Besharse JC, Defoe DM (1998) Role of the retinal pigment epithelium in photoreceptor membrane turnover. In: Marmor MF, Wolfensberger TJ (eds) The retinal pigment epithelium: function and disease. Oxford University Press, New York, pp 152–172

    Google Scholar 

  15. Katz ML (1989) Incomplete proteolysis may contribute to lipofuscin accumulation in the retinal pigment epithelium. Adv Exp Med Biol 266:109–116, Discussion 116–108

    CAS  PubMed  Google Scholar 

  16. Young RW (1971) The renewal of rod and cone outer segments in the rhesus monkey. J Cell Biol 49(2):303–318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Cao W, Wen R, Li F, Lavail MM, Steinberg RH (1997) Mechanical injury increases bFGF and CNTF mRNA expression in the mouse retina. Exp Eye Res 65(2):241–248. doi:10.1006/exer.1997.0328

    Article  CAS  PubMed  Google Scholar 

  18. Bost LM, Aotaki-Keen AE, Hjelmeland LM (1994) Cellular adhesion regulates bFGF gene expression in human retinal pigment epithelial cells. Exp Eye Res 58(5):545–552

    Article  CAS  PubMed  Google Scholar 

  19. Takagi H, Yoshimura N, Tanihara H, Honda Y (1994) Insulin-like growth factor-related genes, receptors, and binding proteins in cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 35(3):916–923

    CAS  PubMed  Google Scholar 

  20. Ahuja P, Caffe AR, Holmqvist I, Soderpalm AK, Singh DP, Shinohara T, van Veen T (2001) Lens epithelium-derived growth factor (LEDGF) delays photoreceptor degeneration in explants of rd/rd mouse retina. Neuroreport 12(13):2951–2955

    Article  CAS  PubMed  Google Scholar 

  21. Ogata N, Tombran-Tink J, Nishikawa M, Nishimura T, Mitsuma Y, Sakamoto T, Matsumura M (2001) Pigment epithelium-derived factor in the vitreous is low in diabetic retinopathy and high in rhegmatogenous retinal detachment. Am J Ophthalmol 132(3):378–382

    Article  CAS  PubMed  Google Scholar 

  22. Campochiaro PA, Hackett SF, Vinores SA, Freund J, Csaky C, LaRochelle W, Henderer J, Johnson M, Rodriguez IR, Friedman Z et al (1994) Platelet-derived growth factor is an autocrine growth stimulator in retinal pigmented epithelial cells. J Cell Sci 107(Pt 9):2459–2469

    CAS  PubMed  Google Scholar 

  23. Khaliq A, Patel B, Jarvis-Evans J, Moriarty P, McLeod D, Boulton M (1995) Oxygen modulates production of bFGF and TGF-beta by retinal cells in vitro. Exp Eye Res 60(4):415–423

    Article  CAS  PubMed  Google Scholar 

  24. Alexander JP, Bradley JM, Gabourel JD, Acott TS (1990) Expression of matrix metalloproteinases and inhibitor by human retinal pigment epithelium. Invest Ophthalmol Vis Sci 31(12):2520–2528

    CAS  PubMed  Google Scholar 

  25. Witmer AN, Vrensen GF, Van Noorden CJ, Schlingemann RO (2003) Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res 22(1):1–29

    Article  CAS  PubMed  Google Scholar 

  26. Adamis AP, Shima DT, Yeo KT, Yeo TK, Brown LF, Berse B, D'Amore PA, Folkman J (1993) Synthesis and secretion of vascular permeability factor/vascular endothelial growth factor by human retinal pigment epithelial cells. Biochem Biophys Res Commun 193(2):631–638

    Article  CAS  PubMed  Google Scholar 

  27. Planck SR, Dang TT, Graves D, Tara D, Ansel JC, Rosenbaum JT (1992) Retinal pigment epithelial cells secrete interleukin-6 in response to interleukin-1. Invest Ophthalmol Vis Sci 33(1):78–82

    CAS  PubMed  Google Scholar 

  28. Elner VM, Burnstine MA, Strieter RM, Kunkel SL, Elner SG (1997) Cell-associated human retinal pigment epithelium interleukin-8 and monocyte chemotactic protein-1: immunochemical and in-situ hybridization analyses. Exp Eye Res 65(6):781–789. doi:10.1006/exer.1997.0380

    Article  CAS  PubMed  Google Scholar 

  29. Becerra SP, Fariss RN, Wu YQ, Montuenga LM, Wong P, Pfeffer BA (2004) Pigment epithelium-derived factor in the monkey retinal pigment epithelium and interphotoreceptor matrix: apical secretion and distribution. Exp Eye Res 78(2):223–234

    Article  CAS  PubMed  Google Scholar 

  30. Ogata N, Wang L, Jo N, Tombran-Tink J, Takahashi K, Mrazek D, Matsumura M (2001) Pigment epithelium derived factor as a neuroprotective agent against ischemic retinal injury. Curr Eye Res 22(4):245–252

    Article  CAS  PubMed  Google Scholar 

  31. Cayouette M, Smith SB, Becerra SP, Gravel C (1999) Pigment epithelium-derived factor delays the death of photoreceptors in mouse models of inherited retinal degenerations. Neurobiol Dis 6(6):523–532. doi:10.1006/nbdi.1999.0263

    Article  CAS  PubMed  Google Scholar 

  32. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85(3):845–881. doi:10.1152/physrev.00021.2004

    Article  CAS  PubMed  Google Scholar 

  33. Panda-Jonas S, Jonas JB, Jakobczyk-Zmija M (1996) Retinal pigment epithelial cell count, distribution, and correlations in normal human eyes. Am J Ophthalmol 121(2):181–189

    CAS  PubMed  Google Scholar 

  34. Steinbrook R (2006) The price of sight–ranibizumab, bevacizumab, and the treatment of macular degeneration. N Engl J Med 355(14):1409–1412. doi:10.1056/NEJMp068185

    Article  CAS  PubMed  Google Scholar 

  35. Boulton M, Dontsov A, Jarvis-Evans J, Ostrovsky M, Svistunenko D (1993) Lipofuscin is a photoinducible free radical generator. J Photochem Photobiol B Biol 19(3):201–204

    Article  CAS  Google Scholar 

  36. Sarna T, Burke JM, Korytowski W, Rozanowska M, Skumatz CM, Zareba A, Zareba M (2003) Loss of melanin from human RPE with aging: possible role of melanin photooxidation. Exp Eye Res 76(1):89–98

    Article  CAS  PubMed  Google Scholar 

  37. Vives-Bauza C, Anand M, Shirazi AK, Magrane J, Gao J, Vollmer-Snarr HR, Manfredi G, Finnemann SC (2008) The age lipid A2E and mitochondrial dysfunction synergistically impair phagocytosis by retinal pigment epithelial cells. J Biol Chem 283(36):24770–24780. doi:10.1074/jbc.M800706200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Zhou J, Jang YP, Kim SR, Sparrow JR (2006) Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proc Natl Acad Sci USA 103(44):16182–16187. doi:10.1073/pnas.0604255103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Glenn JV, Mahaffy H, Wu K, Smith G, Nagai R, Simpson DA, Boulton ME, Stitt AW (2009) Advanced glycation end product (AGE) accumulation on Bruch's membrane: links to age-related RPE dysfunction. Invest Ophthalmol Vis Sci 50(1):441–451. doi:10.1167/iovs.08-1724

    Article  PubMed  Google Scholar 

  40. Schutt F, Bergmann M, Holz FG, Kopitz J (2003) Proteins modified by malondialdehyde, 4-hydroxynonenal, or advanced glycation end products in lipofuscin of human retinal pigment epithelium. Invest Ophthalmol Vis Sci 44(8):3663–3668

    Article  PubMed  Google Scholar 

  41. Boulton M, Dayhaw-Barker P (2001) The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye 15(Pt 3):384–389. doi:10.1038/eye.2001.141

    Article  CAS  PubMed  Google Scholar 

  42. Katz ML, Robison WG Jr (1984) Age-related changes in the retinal pigment epithelium of pigmented rats. Exp Eye Res 38(2):137–151

    Article  CAS  PubMed  Google Scholar 

  43. Lai YL, Rana MW (1986) A study of photoreceptor-retinal pigment epithelium complex: age-related changes in monkeys. Proc Soc Exp Biol Med 181(3):371–381

    Article  CAS  PubMed  Google Scholar 

  44. Weisse I (1995) Changes in the aging rat retina. Ophthalmic Res 27(Suppl 1):154–163

    Article  PubMed  Google Scholar 

  45. Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, Kamei M, Hasan A, Yan L, Rayborn ME, Salomon RG, Hollyfield JG (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci USA 99(23):14682–14687. doi:10.1073/pnas.222551899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Malek G, Li CM, Guidry C, Medeiros NE, Curcio CA (2003) Apolipoprotein B in cholesterol-containing drusen and basal deposits of human eyes with age-related maculopathy. Am J Pathol 162(2):413–425. doi:10.1016/S0002-9440(10)63836-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Mullins RF, Russell SR, Anderson DH, Hageman GS (2000) Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J 14(7):835–846

    CAS  PubMed  Google Scholar 

  48. Anderson DH, Mullins RF, Hageman GS, Johnson LV (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134(3):411–431

    Article  CAS  PubMed  Google Scholar 

  49. Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch's membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20(6):705–732

    Article  CAS  PubMed  Google Scholar 

  50. Johnson LV, Leitner WP, Staples MK, Anderson DH (2001) Complement activation and inflammatory processes in Drusen formation and age related macular degeneration. Exp Eye Res 73(6):887–896. doi:10.1006/exer.2001.1094

    Article  CAS  PubMed  Google Scholar 

  51. Bonilha VL, Bhattacharya SK, West KA, Sun J, Crabb JW, Rayborn ME, Hollyfield JG (2004) Proteomic characterization of isolated retinal pigment epithelium microvilli. Mol Cell Proteomics 3(11):1119–1127. doi:10.1074/mcp.M400106-MCP200

    Article  CAS  PubMed  Google Scholar 

  52. Friedman DS, O'Colmain BJ, Munoz B, Tomany SC, McCarty C, de Jong PT, Nemesure B, Mitchell P, Kempen J, Eye Diseases Prevalence Research G (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122(4):564–572. doi:10.1001/archopht.122.4.564

    Article  PubMed  Google Scholar 

  53. Abecasis GR, Yashar BM, Zhao Y, Ghiasvand NM, Zareparsi S, Branham KE, Reddick AC, Trager EH, Yoshida S, Bahling J, Filippova E, Elner S, Johnson MW, Vine AK, Sieving PA, Jacobson SG, Richards JE, Swaroop A (2004) Age-related macular degeneration: a high-resolution genome scan for susceptibility loci in a population enriched for late-stage disease. Am J Hum Genet 74(3):482–494. doi:10.1086/382786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Connor KM, SanGiovanni JP, Lofqvist C, Aderman CM, Chen J, Higuchi A, Hong S, Pravda EA, Majchrzak S, Carper D, Hellstrom A, Kang JX, Chew EY, Salem N Jr, Serhan CN, Smith LE (2007) Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med 13(7):868–873. doi:10.1038/nm1591

    Article  CAS  PubMed  Google Scholar 

  55. Sarks SH (1976) Ageing and degeneration in the macular region: a clinico-pathological study. Br J Ophthalmol 60(5):324–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Fine SL, Berger JW, Maguire MG, Ho AC (2000) Age-related macular degeneration. N Engl J Med 342(7):483–492. doi:10.1056/NEJM200002173420707

    Article  CAS  PubMed  Google Scholar 

  57. Chen W, Stambolian D, Edwards AO, Branham KE, Othman M, Jakobsdottir J, Tosakulwong N, Pericak-Vance MA, Campochiaro PA, Klein ML, Tan PL, Conley YP, Kanda A, Kopplin L, Li Y, Augustaitis KJ, Karoukis AJ, Scott WK, Agarwal A, Kovach JL, Schwartz SG, Postel EA, Brooks M, Baratz KH, Brown WL, Complications of Age-Related Macular Degeneration Prevention Trial Research G, Brucker AJ, Orlin A, Brown G, Ho A, Regillo C, Donoso L, Tian L, Kaderli B, Hadley D, Hagstrom SA, Peachey NS, Klein R, Klein BE, Gotoh N, Yamashiro K, Ferris Iii F, Fagerness JA, Reynolds R, Farrer LA, Kim IK, Miller JW, Corton M, Carracedo A, Sanchez-Salorio M, Pugh EW, Doheny KF, Brion M, Deangelis MM, Weeks DE, Zack DJ, Chew EY, Heckenlively JR, Yoshimura N, Iyengar SK, Francis PJ, Katsanis N, Seddon JM, Haines JL, Gorin MB, Abecasis GR, Swaroop A (2010) Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc Natl Acad Sci USA 107(16):7401–7406. doi:10.1073/pnas.0912702107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Fritsche LG, Chen W, Schu M, Yaspan BL, Yu Y, Thorleifsson G, Zack DJ, Arakawa S, Cipriani V, Ripke S, Igo RP Jr, Buitendijk GH, Sim X, Weeks DE, Guymer RH, Merriam JE, Francis PJ, Hannum G, Agarwal A, Armbrecht AM, Audo I, Aung T, Barile GR, Benchaboune M, Bird AC, Bishop PN, Branham KE, Brooks M, Brucker AJ, Cade WH, Cain MS, Campochiaro PA, Chan CC, Cheng CY, Chew EY, Chin KA, Chowers I, Clayton DG, Cojocaru R, Conley YP, Cornes BK, Daly MJ, Dhillon B, Edwards AO, Evangelou E, Fagerness J, Ferreyra HA, Friedman JS, Geirsdottir A, George RJ, Gieger C, Gupta N, Hagstrom SA, Harding SP, Haritoglou C, Heckenlively JR, Holz FG, Hughes G, Ioannidis JP, Ishibashi T, Joseph P, Jun G, Kamatani Y, Katsanis N, NK C, Khan JC, Kim IK, Kiyohara Y, Klein BE, Klein R, Kovach JL, Kozak I, Lee CJ, Lee KE, Lichtner P, Lotery AJ, Meitinger T, Mitchell P, Mohand-Said S, Moore AT, Morgan DJ, Morrison MA, Myers CE, Naj AC, Nakamura Y, Okada Y, Orlin A, Ortube MC, Othman MI, Pappas C, Park KH, Pauer GJ, Peachey NS, Poch O, Priya RR, Reynolds R, Richardson AJ, Ripp R, Rudolph G, Ryu E, Sahel JA, Schaumberg DA, Scholl HP, Schwartz SG, Scott WK, Shahid H, Sigurdsson H, Silvestri G, Sivakumaran TA, Smith RT, Sobrin L, Souied EH, Stambolian DE, Stefansson H, Sturgill-Short GM, Takahashi A, Tosakulwong N, Truitt BJ, Tsironi EE, Uitterlinden AG, van Duijn CM, Vijaya L, Vingerling JR, Vithana EN, Webster AR, Wichmann HE, Winkler TW, Wong TY, Wright AF, Zelenika D, Zhang M, Zhao L, Zhang K, Klein ML, Hageman GS, Lathrop GM, Stefansson K, Allikmets R, Baird PN, Gorin MB, Wang JJ, Klaver CC, Seddon JM, Pericak-Vance MA, Iyengar SK, Yates JR, Swaroop A, Weber BH, Kubo M, Deangelis MM, Leveillard T, Thorsteinsdottir U, Haines JL, Farrer LA, Heid IM, Abecasis GR, Consortium AMDG (2013) Seven new loci associated with age-related macular degeneration. Nat Genet 45(4):433–439. doi:10.1038/ng.2578, 439e431–432

    Article  CAS  PubMed  Google Scholar 

  59. Evans JR (2001) Risk factors for age-related macular degeneration. Prog Retin Eye Res 20(2):227–253

    Article  CAS  PubMed  Google Scholar 

  60. Winkler BS, Boulton ME, Gottsch JD, Sternberg P (1999) Oxidative damage and age-related macular degeneration. Mol Vis 5:32

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Zarbin MA (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 122(4):598–614. doi:10.1001/archopht.122.4.598

    Article  PubMed  Google Scholar 

  62. Mata NL, Weng J, Travis GH (2000) Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc Natl Acad Sci USA 97(13):7154–7159. doi:10.1073/pnas.130110497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Our research is supported by the Takeda Science Foundation, Mishima Saiichi Memorial Ophthalmic Research Japan Foundation, Charitable Trust Fund for Ophthalmic Research in Commemoration of Santen Pharmaceutical’s Founder, Creation of Innovation Centers for Advanced Interdisciplinary Research Areas Program, and a grant-in-aid from the Ministry of Education, Science, and Culture of Japan (A.K. #24791823, S.I. #24390392).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Ishida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Kanda, A., Ishida, S. (2014). Roles of the Retinal Pigment Epithelium in Neuroprotection. In: Nakazawa, T., Kitaoka, Y., Harada, T. (eds) Neuroprotection and Neuroregeneration for Retinal Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54965-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54965-9_16

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54964-2

  • Online ISBN: 978-4-431-54965-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics