Skip to main content

Aquaporin in Optic Neuropathies

  • Chapter
  • First Online:
Neuroprotection and Neuroregeneration for Retinal Diseases
  • 767 Accesses

Abstract

The aquaporins (AQPs) are plasma membrane water-transporting proteins. Many AQPs have been identified as playing essential roles in the nervous system and in ocular functions. The AQPs are potential drug targets for several neurological conditions. Additionally, recent evidence has demonstrated that some AQPs are involved in the pathophysiology of optic neuropathies. Notably, AQP4, a pure water channel expressed at astrocytes in the optic nerve, is the first target of neuromyelitis optica (NMO) in optic neuritis. AQP9 facilitates the transport of lactate for neural energy metabolism and may be considered an essential factor for retinal ganglion cell survival. This review summarizes the expression and known functions of the ocular AQPs related to optic neuropathies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tait MJ, Saadoun S, Bell BA, Papadopoulos MC (2008) Water movements in the brain: role of aquaporins. Trends Neurosci 31(1):37–43. doi:10.1016/j.tins.2007.11.003

    Article  CAS  PubMed  Google Scholar 

  2. Gonen T, Walz T (2006) The structure of aquaporins. Q Rev Biophys 39(4):361–396. doi:10.1017/S0033583506004458

    Article  CAS  PubMed  Google Scholar 

  3. Badaut J, Brunet JF, Regli L (2007) Aquaporins in the brain: from aqueduct to “multi-duct”. Metab Brain Dis 22(3–4):251–263. doi:10.1007/s11011-007-9057-2

    Article  CAS  PubMed  Google Scholar 

  4. Nozaki K, Ishii D, Ishibashi K (2008) Intracellular aquaporins: clues for intracellular water transport? Pflugers Arch 456(4):701–707. doi:10.1007/s00424-007-0373-5

    Article  CAS  PubMed  Google Scholar 

  5. Oshio K, Watanabe H, Song Y, Verkman AS, Manley GT (2005) Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J 19(1):76–78. doi:10.1096/fj.04-1711fje

    CAS  PubMed  Google Scholar 

  6. Amiry-Moghaddam M, Ottersen OP (2003) The molecular basis of water transport in the brain. Nat Rev Neurosci 4(12):991–1001. doi:10.1038/nrn1252

    Article  CAS  PubMed  Google Scholar 

  7. Suzuki R, Okuda M, Asai J, Nagashima G, Itokawa H, Matsunaga A, Fujimoto T, Suzuki T (2006) Astrocytes co-express aquaporin-1, -4, and vascular endothelial growth factor in brain edema tissue associated with brain contusion. Acta Neurochir Suppl 96:398–401

    Article  CAS  PubMed  Google Scholar 

  8. Satoh J, Tabunoki H, Yamamura T, Arima K, Konno H (2007) Human astrocytes express aquaporin-1 and aquaporin-4 in vitro and in vivo. Neuropathology 27(3):245–256

    Article  PubMed  Google Scholar 

  9. Nesic O, Lee J, Unabia GC, Johnson K, Ye Z, Vergara L, Hulsebosch CE, Perez-Polo JR (2008) Aquaporin 1 - a novel player in spinal cord injury. J Neurochem 105(3):628–640. doi:10.1111/j.1471-4159.2007.05177.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Fischbarg J (2003) On the mechanism of fluid transport across corneal endothelium and epithelia in general. J Exp Zool A Comp Exp Biol 300(1):30–40. doi:10.1002/jez.a.10306

    Article  PubMed  Google Scholar 

  11. Hasegawa H, Lian SC, Finkbeiner WE, Verkman AS (1994) Extrarenal tissue distribution of CHIP28 water channels by in situ hybridization and antibody staining. Am J Physiol 266(4 Pt 1):C893–C903

    CAS  PubMed  Google Scholar 

  12. Yamaguchi Y, Watanabe T, Hirakata A, Hida T (2006) Localization and ontogeny of aquaporin-1 and -4 expression in iris and ciliary epithelial cells in rats. Cell Tissue Res 325(1):101–109. doi:10.1007/s00441-005-0122-z

    Article  CAS  PubMed  Google Scholar 

  13. Hamann S, Zeuthen T, La Cour M, Nagelhus EA, Ottersen OP, Agre P, Nielsen S (1998) Aquaporins in complex tissues: distribution of aquaporins 1-5 in human and rat eye. Am J Physiol 274(5 Pt 1):C1332–C1345

    CAS  PubMed  Google Scholar 

  14. Goel M, Picciani RG, Lee RK, Bhattacharya SK (2010) Aqueous humor dynamics: a review. Open Ophthalmol J 4:52–59. doi:10.2174/1874364101004010052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Stamer WD, Peppel K, O’Donnell ME, Roberts BC, Wu F, Epstein DL (2001) Expression of aquaporin-1 in human trabecular meshwork cells: role in resting cell volume. Invest Ophthalmol Vis Sci 42(8):1803–1811

    CAS  PubMed  Google Scholar 

  16. Kang TH, Choi YK, Kim IB, Oh SJ, Chun MH (2005) Identification and characterization of an aquaporin 1 immunoreactive amacrine-type cell of the mouse retina. J Comp Neurol 488(3):352–367. doi:10.1002/cne.20589

    Article  CAS  PubMed  Google Scholar 

  17. Iandiev I, Pannicke T, Reichel MB, Wiedemann P, Reichenbach A, Bringmann A (2005) Expression of aquaporin-1 immunoreactivity by photoreceptor cells in the mouse retina. Neurosci Lett 388(2):96–99. doi:10.1016/j.neulet.2005.06.046

    Article  CAS  PubMed  Google Scholar 

  18. Papadopoulos MC, Manley GT, Krishna S, Verkman AS (2004) Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J 18(11):1291–1293. doi:10.1096/fj.04-1723fje

    CAS  PubMed  Google Scholar 

  19. Oshio K, Binder DK, Yang B, Schecter S, Verkman AS, Manley GT (2004) Expression of aquaporin water channels in mouse spinal cord. Neuroscience 127(3):685–693. doi:10.1016/j.neuroscience.2004.03.016

    Article  CAS  PubMed  Google Scholar 

  20. Nagelhus EA, Veruki ML, Torp R, Haug FM, Laake JH, Nielsen S, Agre P, Ottersen OP (1998) Aquaporin-4 water channel protein in the rat retina and optic nerve: polarized expression in Muller cells and fibrous astrocytes. J Neurosci 18(7):2506–2519

    CAS  PubMed  Google Scholar 

  21. Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S (1998) Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A 95(20):11981–11986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17(1):171–180

    CAS  PubMed  Google Scholar 

  23. Nagelhus EA, Horio Y, Inanobe A, Fujita A, Haug FM, Nielsen S, Kurachi Y, Ottersen OP (1999) Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia 26(1):47–54

    Article  CAS  PubMed  Google Scholar 

  24. Tenckhoff S, Hollborn M, Kohen L, Wolf S, Wiedemann P, Bringmann A (2005) Diversity of aquaporin mRNA expressed by rat and human retinas. Neuroreport 16(1):53–56

    Article  CAS  PubMed  Google Scholar 

  25. Goodyear MJ, Crewther SG, Junghans BM (2009) A role for aquaporin-4 in fluid regulation in the inner retina. Vis Neurosci 26(2):159–165. doi:10.1017/S0952523809090038

    Article  PubMed  Google Scholar 

  26. Hollborn M, Dukic-Stefanovic S, Pannicke T, Ulbricht E, Reichenbach A, Wiedemann P, Bringmann A, Kohen L (2011) Expression of aquaporins in the retina of diabetic rats. Curr Eye Res 36(9):850–856. doi:10.3109/02713683.2011.593108

    Article  CAS  PubMed  Google Scholar 

  27. Iandiev I, Dukic-Stefanovic S, Hollborn M, Pannicke T, Hartig W, Wiedemann P, Reichenbach A, Bringmann A, Kohen L (2011) Immunolocalization of aquaporin-6 in the rat retina. Neurosci Lett 490(2):130–134. doi:10.1016/j.neulet.2010.12.042

    Article  CAS  PubMed  Google Scholar 

  28. Badaut J, Petit JM, Brunet JF, Magistretti PJ, Charriaut-Marlangue C, Regli L (2004) Distribution of Aquaporin 9 in the adult rat brain: preferential expression in catecholaminergic neurons and in glial cells. Neuroscience 128(1):27–38. doi:10.1016/j.neuroscience.2004.05.042

    Article  CAS  PubMed  Google Scholar 

  29. Tsukaguchi H, Shayakul C, Berger UV, Mackenzie B, Devidas S, Guggino WB, van Hoek AN, Hediger MA (1998) Molecular characterization of a broad selectivity neutral solute channel. J Biol Chem 273(38):24737–24743

    Article  CAS  PubMed  Google Scholar 

  30. Badaut J, Hirt L, Granziera C, Bogousslavsky J, Magistretti PJ, Regli L (2001) Astrocyte-specific expression of aquaporin-9 in mouse brain is increased after transient focal cerebral ischemia. J Cereb Blood Flow Metab 21(5):477–482. doi:10.1097/00004647-200105000-00001

    Article  CAS  PubMed  Google Scholar 

  31. Elkjaer M, Vajda Z, Nejsum LN, Kwon T, Jensen UB, Amiry-Moghaddam M, Frokiaer J, Nielsen S (2000) Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain. Biochem Biophys Res Commun 276(3):1118–1128. doi:10.1006/bbrc.2000.3505

    Article  CAS  PubMed  Google Scholar 

  32. Dibas A, Yang MH, Bobich J, Yorio T (2007) Stress-induced changes in neuronal Aquaporin-9 (AQP9) in a retinal ganglion cell-line. Pharmacol Res 55(5):378–384. doi:10.1016/j.phrs.2007.01.021

    Article  CAS  PubMed  Google Scholar 

  33. Naka M, Kanamori A, Negi A, Nakamura M (2010) Reduced expression of aquaporin-9 in rat optic nerve head and retina following elevated intraocular pressure. Invest Ophthalmol Vis Sci 51(9):4618–4626. doi:10.1167/iovs.09-4712

    Article  PubMed  Google Scholar 

  34. Miki A, Kanamori A, Negi A, Naka M, Nakamura M (2013) Loss of aquaporin 9 expression adversely affects the survival of retinal ganglion cells. Am J Pathol 182(5):1727–1739. doi:10.1016/j.ajpath.2013.01.027

    Article  CAS  PubMed  Google Scholar 

  35. Tran TL, Bek T, Holm L, la Cour M, Nielsen S, Prause JU, Rojek A, Hamann S, Heegaard S (2013) Aquaporins 6–12 in the human eye. Acta Ophthalmol 91(6):557–563. doi:10.1111/j.1755-3768.2012.02547.x

    Article  CAS  PubMed  Google Scholar 

  36. Mizokami J, Kanamori A, Negi A, Nakamura M (2011) A preliminary study of reduced expression of aquaporin-9 in the optic nerve of primate and human eyes with glaucoma. Curr Eye Res 36(11):1064–1067. doi:10.3109/02713683.2011.611610

    Article  CAS  PubMed  Google Scholar 

  37. Jarius S, Wildemann B (2010) AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance. Nat Rev Neurol 6(7):383–392. doi:10.1038/nrneurol.2010.72

    Article  CAS  PubMed  Google Scholar 

  38. Kitley J, Leite MI, Nakashima I, Waters P, McNeillis B, Brown R, Takai Y, Takahashi T, Misu T, Elsone L, Woodhall M, George J, Boggild M, Vincent A, Jacob A, Fujihara K, Palace J (2012) Prognostic factors and disease course in aquaporin-4 antibody-positive patients with neuromyelitis optica spectrum disorder from the United Kingdom and Japan. Brain 135(Pt 6):1834–1849. doi:10.1093/brain/aws109

    Article  PubMed  Google Scholar 

  39. Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM, Trebst C, Weinshenker B, Wingerchuk D, Parisi JE, Lassmann H (2002) A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 125(Pt 7):1450–1461

    Article  PubMed  Google Scholar 

  40. Wingerchuk DM, Lennon VA, Pittock SJ, Lucchinetti CF, Weinshenker BG (2006) Revised diagnostic criteria for neuromyelitis optica. Neurology 66(10):1485–1489. doi:10.1212/01.wnl.0000216139.44259.74

    Article  CAS  PubMed  Google Scholar 

  41. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K, Nakashima I, Weinshenker BG (2004) A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364(9451):2106–2112. doi:10.1016/S0140-6736(04)17551-X

    Article  CAS  PubMed  Google Scholar 

  42. Misu T, Fujihara K, Nakamura M, Murakami K, Endo M, Konno H, Itoyama Y (2006) Loss of aquaporin-4 in active perivascular lesions in neuromyelitis optica: a case report. Tohoku J Exp Med 209(3):269–275

    Article  PubMed  Google Scholar 

  43. Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR (2005) IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 202(4):473–477. doi:10.1084/jem.20050304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Roemer SF, Parisi JE, Lennon VA, Benarroch EE, Lassmann H, Bruck W, Mandler RN, Weinshenker BG, Pittock SJ, Wingerchuk DM, Lucchinetti CF (2007) Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain 130(Pt 5):1194–1205. doi:10.1093/brain/awl371

    Article  PubMed  Google Scholar 

  45. Saadoun S, Waters P, Bell BA, Vincent A, Verkman AS, Papadopoulos MC (2010) Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain 133(Pt 2):349–361. doi:10.1093/brain/awp309

    Article  PubMed Central  PubMed  Google Scholar 

  46. Zhang H, Bennett JL, Verkman AS (2011) Ex vivo spinal cord slice model of neuromyelitis optica reveals novel immunopathogenic mechanisms. Ann Neurol 70(6):943–954. doi:10.1002/ana.22551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Marignier R, Nicolle A, Watrin C, Touret M, Cavagna S, Varrin-Doyer M, Cavillon G, Rogemond V, Confavreux C, Honnorat J, Giraudon P (2010) Oligodendrocytes are damaged by neuromyelitis optica immunoglobulin G via astrocyte injury. Brain 133(9):2578–2591. doi:10.1093/brain/awq177

    Article  PubMed  Google Scholar 

  48. Matsumoto Y, Kanamori A, Nakamura M, Takahashi T, Nakashima I, Negi A (2014) Sera from patients with seropositive neuromyelitis optica spectral disorders caused the degeneration of rodent optic nerve. Exp Eye Res 119:61–69. doi:10.1016/j.exer.2013.12.010

  49. Tradtrantip L, Zhang H, Anderson MO, Saadoun S, Phuan PW, Papadopoulos MC, Bennett JL, Verkman AS (2012) Small-molecule inhibitors of NMO-IgG binding to aquaporin-4 reduce astrocyte cytotoxicity in neuromyelitis optica. FASEB J 26(5):2197–2208. doi:10.1096/fj.11-201608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Tradtrantip L, Zhang H, Saadoun S, Phuan PW, Lam C, Papadopoulos MC, Bennett JL, Verkman AS (2012) Anti-aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica. Ann Neurol 71(3):314–322. doi:10.1002/ana.22657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Tradtrantip L, Ratelade J, Zhang H, Verkman AS (2013) Enzymatic deglycosylation converts pathogenic neuromyelitis optica anti-aquaporin-4 immunoglobulin G into therapeutic antibody. Ann Neurol 73(1):77–85. doi:10.1002/ana.23741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Fernandes DB, Raza AS, Nogueira RG, Wang D, Callegaro D, Hood DC, Monteiro ML (2013) Evaluation of inner retinal layers in patients with multiple sclerosis or neuromyelitis optica using optical coherence tomography. Ophthalmology 120(2):387–394. doi:10.1016/j.ophtha.2012.07.066

    Article  PubMed Central  PubMed  Google Scholar 

  53. Sotirchos ES, Saidha S, Byraiah G, Mealy MA, Ibrahim MA, Sepah YJ, Newsome SD, Ratchford JN, Frohman EM, Balcer LJ, Crainiceanu CM, Nguyen QD, Levy M, Calabresi PA (2013) In vivo identification of morphologic retinal abnormalities in neuromyelitis optica. Neurology 80(15):1406–1414. doi:10.1212/WNL.0b013e31828c2f7a

    Article  PubMed Central  PubMed  Google Scholar 

  54. Gelfand JM, Cree BA, Nolan R, Arnow S, Green AJ (2013) Microcystic inner nuclear layer abnormalities and neuromyelitis optica. JAMA Neurol 70(5):629–633. doi:10.1001/jamaneurol.2013.1832

    Article  PubMed  Google Scholar 

  55. Kaufhold F, Zimmermann H, Schneider E, Ruprecht K, Paul F, Oberwahrenbrock T, Brandt AU (2013) Optic neuritis is associated with inner nuclear layer thickening and microcystic macular edema independently of multiple sclerosis. PLoS One 8(8):e71145. doi:10.1371/journal.pone.0071145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Pannicke T, Wurm A, Iandiev I, Hollborn M, Linnertz R, Binder DK, Kohen L, Wiedemann P, Steinhauser C, Reichenbach A, Bringmann A (2010) Deletion of aquaporin-4 renders retinal glial cells more susceptible to osmotic stress. J Neurosci Res 88(13):2877–2888. doi:10.1002/jnr.22437

    CAS  PubMed  Google Scholar 

  57. Dibas A, Yang MH, He S, Bobich J, Yorio T (2008) Changes in ocular aquaporin-4 (AQP4) expression following retinal injury. Mol Vis 14:1770–1783

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Da T, Verkman AS (2004) Aquaporin-4 gene disruption in mice protects against impaired retinal function and cell death after ischemia. Invest Ophthalmol Vis Sci 45(12):4477–4483. doi:10.1167/iovs.04-0940

    Article  PubMed  Google Scholar 

  59. Dibas A, Oku H, Fukuhara M, Kurimoto T, Ikeda T, Patil RV, Sharif NA, Yorio T (2010) Changes in ocular aquaporin expression following optic nerve crush. Mol Vis 16:330–340

    CAS  PubMed Central  PubMed  Google Scholar 

  60. van Hall G, Stromstad M, Rasmussen P, Jans O, Zaar M, Gam C, Quistorff B, Secher NH, Nielsen HB (2009) Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab 29(6):1121–1129. doi:10.1038/jcbfm.2009.35

    Article  PubMed  Google Scholar 

  61. Antonetti DA, Barber AJ, Bronson SK, Freeman WM, Gardner TW, Jefferson LS, Kester M, Kimball SR, Krady JK, LaNoue KF, Norbury CC, Quinn PG, Sandirasegarane L, Simpson IA, Group JDRC (2006) Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes 55(9):2401–2411. doi:10.2337/db05-1635

    Article  CAS  PubMed  Google Scholar 

  62. Schurr A, Gozal E (2011) Aerobic production and utilization of lactate satisfy increased energy demands upon neuronal activation in hippocampal slices and provide neuroprotection against oxidative stress. Front Pharmacol 2:96. doi:10.3389/fphar.2011.00096

    PubMed Central  PubMed  Google Scholar 

  63. Schurr A, Payne RS (2007) Lactate, not pyruvate, is neuronal aerobic glycolysis end product: an in vitro electrophysiological study. Neuroscience 147(3):613–619. doi:10.1016/j.neuroscience.2007.05.002

    Article  CAS  PubMed  Google Scholar 

  64. Mylonakou MN, Petersen PH, Rinvik E, Rojek A, Valdimarsdottir E, Zelenin S, Zeuthen T, Nielsen S, Ottersen OP, Amiry-Moghaddam M (2009) Analysis of mice with targeted deletion of AQP9 gene provides conclusive evidence for expression of AQP9 in neurons. J Neurosci Res 87(6):1310–1322. doi:10.1002/jnr.21952

    Article  CAS  PubMed  Google Scholar 

  65. Amiry-Moghaddam M, Lindland H, Zelenin S, Roberg BA, Gundersen BB, Petersen P, Rinvik E, Torgner IA, Ottersen OP (2005) Brain mitochondria contain aquaporin water channels: evidence for the expression of a short AQP9 isoform in the inner mitochondrial membrane. FASEB J 19(11):1459–1467. doi:10.1096/fj.04-3515com

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiyasu Kanamori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Kanamori, A. (2014). Aquaporin in Optic Neuropathies. In: Nakazawa, T., Kitaoka, Y., Harada, T. (eds) Neuroprotection and Neuroregeneration for Retinal Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54965-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54965-9_12

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54964-2

  • Online ISBN: 978-4-431-54965-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics