Skip to main content

Part of the book series: Evolutionary Economics and Social Complexity Science ((EESCS,volume 6))

Abstract

In the previous chapter, we discussed Nowak’s five fundamental reciprocity mechanisms for adding social viscosity: kin selection, direct reciprocity, indirect reciprocity, network reciprocity, and group selection. In this chapter, we focus specifically on network reciprocity, as this mechanism has received the most attention in communities of statistical physicists and theoretical biologists who specialize in evolutionary game theory. Since 1992, when the first study of the spatial prisoner’s dilemma (SPD) was conducted by Nowak and May (1992), the number of papers dealing with network reciprocity has increased to several thousand. The main reason for this is that network reciprocity is regarded as the most important and interesting of the mechanisms from an application point of view. In fact, we can observe a lot of evidence in real life of network reciprocity working to establish mutual cooperation not only in human social systems but also in those of other animal species. The network reciprocity mechanism relies on two effects. The first is limiting the number of game opponents (that is, “depressing anonymity,” rather than having an infinite and well-mixed population), and the second is a local adaptation mechanism, in which an agent copies a strategy from a neighbor linked by a network. These two effects explain how cooperators survive in a social dilemma system, even though it requires agents to use only the simplest strategy—either cooperation (C) or defection (D), and this has attracted biologists who guess that network reciprocity may explain the evolution of cooperation even among primitive organisms without any sophisticated intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a more precise discussion, we should use D g ′ and D r ′ by varying R while keeping P = 0 for example, instead of relying on D g and D r . Although we can go along that, hereafter, throughout the following text in the book, we assume assuming R = 1 and P = 0, and apply D g ′ (= D g ′) and D r (= D r ′) as a set of scaling parameters for simplicity and transparency for the discussion.

  2. 2.

    Not only this point but also all the detailed result provided in this section can be referenced to Yamauchi et al. (2010, 2011).

  3. 3.

    A reader can find many literatures. Among those, we only cite, here, only four works as below: Tanimoto (2007a), Li et al. (2007), Fu et al. (2009), Chen et al. (2009).

References

  • Barabasi, A.L., and R. Albert. 1999. Emergence of scaling in random networks. Science 286: 509–512.

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  • Berde, M. 2011. Playing against the fittest: A simple strategy that promotes the emergence of cooperation. EPL 94: 30003.

    Article  ADS  Google Scholar 

  • Bollobás, B. 1985. Random graphs. London: Academic.

    MATH  Google Scholar 

  • Brede, M. 2011. Playing against the fittest A simple strategy that promotes the emergence of cooperation. EPL 94: 30003.

    Article  ADS  Google Scholar 

  • Chen, X., F. Fu, and L. Wang. 2009. Social tolerance allows cooperation to prevail in an adaptive environment. Physical Review E 80: 051104.

    Article  ADS  Google Scholar 

  • Cong, R., Y–.Y. Qiu, X–.J. Chen, and L. Wang. 2010. Robustness of cooperation on highly clustered scale-free networks. Chinese Physical Letters 27(3): 030203.

    Article  ADS  Google Scholar 

  • Dai, Q., H. Li, H. Cheng, Y. Li, and J. Yang. 2010. Double-dealing behavior potentially promotes cooperation in evolutionary prisoner’s dilemma games. New Journal of Physics 12: 113015.

    Article  ADS  Google Scholar 

  • Day, T., and P.D. Taylor. 2003. Evolutionary dynamics and stability in discrete and continuous games. Evolutionary Ecology Research 5: 605–613.

    Google Scholar 

  • Fu, F., T. Wu, and L. Wang. 2009. Partner switching stabilizes cooperation in coevolutionary prisoner’s dilemma. Physical Review E 79: 036101.

    Article  MathSciNet  ADS  Google Scholar 

  • Fu, F., M.A. Nowak, and C. Hauert. 2010. Invasion and expansion of cooperators in lattice populations: Prisoner’s dilemma vs. snowdrift games. Journal of Theoretical Biology 266: 358–386.

    Article  PubMed Central  MathSciNet  PubMed  Google Scholar 

  • Gomez-Gardenes, J., M. Campillo, L.M. Floria, and T. Moreno. 2007. Dynamical organization of cooperation in complex topologies. Physical Review Letters 98: 108103.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Grilo, C., and L. Correia. 2007. What makes spatial prisoner’s dilemma game sensitive to asynchronism?. Proceedings of the 11th international conference on the simulation and synthesis of living systems.

    Google Scholar 

  • Hamilton, W.D. 1964. The genetical evolution of social behavior. 1. Journal of Theoretical Biology 7: 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Kirchkamp, O. 1999. Simultaneous evolution of learning rules and strategies. Journal of Economic Behavior & Organization 40: 295–312.

    Article  Google Scholar 

  • Li, W., X. Zhang, and G. Hu. 2007. How scale-free networks and large-scale collective cooperation emerge in complex homogeneous social systems. Physical Review E 76: 045102.

    Article  ADS  Google Scholar 

  • Moyano, L.G., and A. Sanchez. 2009. Evolving learning rules and emergence of cooperation in spatial prisoner’s dilemma. Journal of Theoretical Biology 259: 84–95.

    Article  MathSciNet  PubMed  Google Scholar 

  • Newman, M.E.J. 2002. Assortative mixing in networks. Physical Review Letters 89: 208701.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Nowak, M.A. 2006. Five rules for the evolution of cooperation. Science 314: 1560–1563.

    Article  PubMed Central  CAS  PubMed  ADS  Google Scholar 

  • Nowak, M.A., and R.M. May. 1992. Evolutionary games and spatial chaos. Nature 359: 826–829.

    Article  ADS  Google Scholar 

  • Ogasawara, T., Tanimoto, J., Fukuda, E., and N. Ikegaya. 2014. Effect of a large gaming neighborhood and a strategy adaptation neighborhood for bolstering network reciprocity in a prisoner’s dilemma game. Journal of Statistical Mechanics: Theory and Experiment 2014: P12024.

    Google Scholar 

  • Ohtsuki, H., C. Hauert, E. Lieberman, and M.A. Nowak. 2006. A simple rule for the evolution of cooperation on graphs and social networks. Nature 441: 502–505.

    Article  PubMed Central  CAS  PubMed  ADS  Google Scholar 

  • Pacheco, J.M., A. Traulsen, and M.A. Nowak. 2006. Coevolution of strategy and structure in complex networks with dynamical linking. Physical Review Letters 97: 258103.

    Article  PubMed Central  PubMed  ADS  Google Scholar 

  • Pan, Q., S. Shi, Y. Zhang, and M. He. 2013. Cooperation in spatial prisoner’s dilemma game with delayed decisions. Chaos, Solitons & Fractals 56: 166–174.

    Article  ADS  Google Scholar 

  • Perc, M. 2006a. Coherence resonance in a spatial prisoner’s dilemma game. New Journal of Physics 8: 22.

    Article  ADS  Google Scholar 

  • Perc, M. 2006b. Chaos promotes cooperation in the spatial prisoner’s dilemma game. Europhysics Letters 75(6): 841–846.

    Article  CAS  MathSciNet  ADS  Google Scholar 

  • Perc, M. 2007. Transition from Gaussian to Levy distributions of stochastic payoff variations in the spatial prisoner’s dilemma game. Physical Review E 75: 022101.

    Article  ADS  Google Scholar 

  • Perc, M., and M. Marhl. 2006. Evolutionary and dynamical coherence resonances in the pair approximated prisoner’s dilemma game. New Journal of Physics 8: 101016.

    Google Scholar 

  • Perc, M., and A. Szolnoki. 2010. Coevolutionary games – A mini review. Biosystems 99: 109–125.

    Article  PubMed  Google Scholar 

  • Perc, M., and Z. Wang. 2010. Heterogeneous aspiration promotes cooperation in the prisoner’s dilemma game. PLoS ONE 5(12): e15117.

    Article  PubMed Central  CAS  PubMed  ADS  Google Scholar 

  • Pestelacci, E., M. Tomassini, and L. Luthi. 2008. Evolution of cooperation and coordination in a dynamically networked society. Biological Theory 3: 139–153.

    Article  Google Scholar 

  • Poncela, J., J. Gomez-Gardenes, L.M. Flora, and Y. Moreno. 2007. Robustness of cooperation in the evolutionary prisoner’s dilemma on complex networks. New Journal of Physics 9: 101088.

    Article  Google Scholar 

  • Poncela, J., J. Gomez-Gardenes, L.M. Floria, A. Sanchez, and Y. Moreno. 2008. Complex cooperative networks from evolutionary preferential attachment. PLoS ONE 3: e2449.

    Article  PubMed Central  PubMed  ADS  Google Scholar 

  • Ren, G., and X. Wang. 2014. Robustness of cooperation in memory-based prisoner’s dilemma game on a square lattice. Physica A 408: 40–46.

    Article  MathSciNet  ADS  Google Scholar 

  • Roca, C.P., J.A. Cuesta, and A. Sanchez. 2006. Time scales in evolutionary dynamics. Physical Review Letters 97: 158701.

    Article  PubMed  ADS  Google Scholar 

  • Roca, C.P., J.A. Cuesta, and A. S’anchez. 2009. Effect of spatial structure on the evolution of cooperation. Physical Review E 80: 046106.

    Article  ADS  Google Scholar 

  • Rong, Z., X. Li, and X. Wang. 2007. Roles of mixing patterns in cooperation on a scale-free networked game. Physical Review E 76: 027101.

    Article  ADS  Google Scholar 

  • Santos, F.C., J.M. Pacheco, and T. Lenaerts. 2006a. Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proceedings of the National Academy of Science of the United States of America 103(9): 3490–3494.

    Article  CAS  ADS  Google Scholar 

  • Santos, F.C., J.M. Pacheco, and T. Lenaerts. 2006b. Cooperation prevails when individuals adjust their social ties. PLoS Computational Biology 2(10): 1284–1291.

    Article  CAS  Google Scholar 

  • Schuessler, R. 1989. Exit threats and cooperation under anonymity. Journal of Conflict Resolution 33: 728–749.

    Article  Google Scholar 

  • Shigaki, K., J. Tanimoto, Z. Wang, and E. Fukuda. 2013. Effect of initial fraction of cooperators on cooperative behavior in evolutionary prisoner’s dilemma. PLoS ONE 8(11): e76942.

    Article  PubMed Central  CAS  PubMed  ADS  Google Scholar 

  • Szabo, G., and G. Fath. 2007. Evolutionary games on graphs. Physics Reports 446: 97–216.

    Article  MathSciNet  ADS  Google Scholar 

  • Szolnoki, A., and M. Perc. 2009a. Resolving social dilemmas on evolving random networks. EPL 86: 30007.

    Article  ADS  Google Scholar 

  • Szolnoki, A., and M. Perc. 2009b. Emergence of multilevel selection in the prisoner’s dilemma game on coevolving random networks. New Journal of Physics 11: 093033.

    Article  ADS  Google Scholar 

  • Szolnoki, A., M. Perc, and M. Mobilia. 2014. Facilitators on networks reveal optimal interplay between information exchange and reciprocity. Physical Review E 89: 042802.

    Article  ADS  Google Scholar 

  • Tang, C.-L., W.-X. Wang, X. We, and B.-H. Wang. 2006. Effects of average degree on cooperation in networked evolutionary game. European Physical Journal B 53: 411–415.

    Article  MATH  CAS  ADS  Google Scholar 

  • Tanimoto, J. 2007a. Dilemma-solving effects by the coevolution of both networks and strategy in a 2 × 2 game. Physical Review E 76: 021126.

    Article  ADS  Google Scholar 

  • Tanimoto, J. 2007b. Promotion of cooperation by payoff noise in a 2 × 2 game. Physical Review E 76: 041130.

    Article  ADS  Google Scholar 

  • Tanimoto, J. 2009. Promotion of cooperation through co-evolution of networks and strategy in a 2 × 2 game. Physica A 388(6): 953–960.

    Article  ADS  Google Scholar 

  • Tanimoto, J. 2010. Effect of assortativity by degree on emerging cooperation in a 2 × 2 dilemma game played on an evolutionary network. Physica A 389: 3325–3335.

    Article  ADS  Google Scholar 

  • Tanimoto, J. 2011. A study of a quadruple co-evolutionary model and its reciprocity phase for various Prisoner’s Dilemma games. International Journal of Modern Physics C 22(4): 401–407.

    Article  ADS  Google Scholar 

  • Tanimoto, J. 2014. Simultaneously selecting appropriate partners for gaming and strategy adaptation to enhance network reciprocity in the prisoner’s dilemma. Physical Review E 89: 012106.

    Article  ADS  Google Scholar 

  • Tanimoto, J., M. Nakata, A. Hagishima, and N. Ikegaya. 2011. Spatially correlated heterogeneous aspirations to enhance network reciprocity. Physica A 391(3): 680–685.

    Article  ADS  Google Scholar 

  • Tomassini, M., L. Luthi, and E. Pestelacci. 2007. Social dilemmas and cooperation in complex networks. International Journal of Modern Physics C 18(07): 1173–1185.

    Article  MATH  ADS  Google Scholar 

  • Tomochi, M. 2004. Defectors’ niches: Prisoner’s dilemma game on disordered networks. Social Networks 26(4): 309–321.

    Article  Google Scholar 

  • Vainstein, M.H., and J.J. Arenzon. 2001. Disordered environments in spatial games. Physical Review E 64: 051905.

    Article  CAS  ADS  Google Scholar 

  • Van Segbroeck, S., F.C. Santos, T. Lenaerts, and J.M. Pacheco. 2009. Reacting differently to adverse ties promotes cooperation in social networks. Physical Review Letters 102: 058105.

    Article  PubMed  ADS  Google Scholar 

  • Vincent, T.L., and R. Cressman. 2000. An ESS maximum principle for matrix games. Theoretical Population Biology 58: 173–186.

    Article  MATH  CAS  PubMed  Google Scholar 

  • Vukov, J., G. Szabo, and A. Szolnoki. 2006. Cooperation in noisy case: Prisoner’s dilemma game on two types of regular random graphs. Physical Review E 73: 067103.

    Article  ADS  Google Scholar 

  • Wang, Z., and M. Perc. 2010. Aspiring to the fittest and promoted of cooperation in the prisoner’s dilemma game. Physical Review E 82: 021115.

    Article  ADS  Google Scholar 

  • Watts, D.J., and S.H. Strogatz. 1998. Collective dynamics of ‘small-world’ networks. Nature 393: 440–442.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Xia, C., Q. Miao, and J. Zhang. 2013. Impact of neighborhood separation on the spatial reciprocity in the prisoner’s dilemma game. Chaos, Solitons & Fractals 51: 22–30.

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  • Xulvi-Brunet, R., and I.M. Sokolov. 2004. Reshuffling scale-free networks: From random to assortative. Physical Review E 70: 066102.

    Article  CAS  ADS  Google Scholar 

  • Yamauchi, A., J. Tanimoto, and A. Hagishima. 2010. What controls network reciprocity in the prisoner’s dilemma game? Biosystems 102(2–3): 82–87.

    Article  PubMed  Google Scholar 

  • Yamauchi, A., J. Tanimoto, and A. Hagishima. 2011. An analysis of network reciprocity in prisoner’s dilemma games using full factorial designs of experiment. Biosystems 103: 85–92.

    Article  PubMed  Google Scholar 

  • Zhong, W., S. Kokubo, and J. Tanimoto. 2012. How is the equilibrium of continuous strategy game different from that of discrete strategy game? Biosystems 107(2): 89–94.

    Article  Google Scholar 

  • Zimmermann, M., and V. Eguiluz. 2005. Cooperation, social networks, and the emergence of leadership in a prisoner’s dilemma with adaptive local interactions. Physical Review E 72: 056118.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Tanimoto, J. (2015). Network Reciprocity. In: Fundamentals of Evolutionary Game Theory and its Applications. Evolutionary Economics and Social Complexity Science, vol 6. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54962-8_3

Download citation

Publish with us

Policies and ethics