\(n\)-DBI Gravity

  • Yuki SatoEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter we focus on \(n\)-DBI gravity and uncover its theoretical aspects. To begin with, in Sect. 3.1 we show that solutions of \(n\)-DBI gravity include any solutions of general relativity with a specific property of the curvature and effects of the space-time foliation appear in the solutions which cannot be removed by allowed coordinate transformations. Next, in Sect. 3.2 we reveal the existence of a scalar graviton originated with a preferred space-time foliation based on Dirac’s theory of constrained systems and investigate its possible pathological behaviors. As it turns out, the scalar mode does not propagate and there is no evidence of the pathology related to the scalar graviton such as vanishing lapse, instabilities and strong self-coupling at low energy scales.


\(n\)-DBI gravity Dirac’s theory of constrained systems Scalar graviton 


  1. 1.
    C. Herdeiro, S. Hirano and Y. Sato, “n-DBI gravity”, Phys. Rev. D 84, 124048 (2011) arXiv:1110.0832 [gr-qc].
  2. 2.
    Herdeiro, C., & Hirano, S. (2012). Scale invariance and a gravitational model with non-eternal inflation. JCAP, 1205, 031. [arXiv:1109.1468] [hep-th].ADSCrossRefGoogle Scholar
  3. 3.
    Coelho, F. S., Herdeiro, C., Hirano, S., & Sato, Y. (2012). On the scalar graviton in n-DBI gravity. Phys. Rev. D, 86, 064009. [arXiv:1205.6850] [hep-th].ADSCrossRefGoogle Scholar
  4. 4.
    T. Jacobson, “Einstein-aether gravity: A Status report”, PoS QG -PH (2007) 020 arXiv:0801.1547 [gr-qc].
  5. 5.
    Horava, P. (2009). Quantum Gravity at a Lifshitz Point. Phys. Rev., D79, 084008. [arXiv:0901.3775] [hep-th].ADSMathSciNetGoogle Scholar
  6. 6.
    Stewart, J. M. (1990). Perturbations of Friedmann-Robertson-Walker cosmological models. Class. Quant. Grav., 7, 1169.ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    Blas, D., Pujolas, O., & Sibiryakov, S. (2010). Consistent Extension of Horava Gravity. Phys. Rev. Lett., 104, 181302. [arXiv:0909.3525] [hep-th].ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    Henneaux, M., Kleinschmidt, A., & Lucena, G. (2010). Gomez, “A dynamical inconsistency of Horava gravity”. Phys. Rev. D, 81, 064002. [arXiv:0912.0399] [hep-th].ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    Blas, D., Pujolas, O., & Sibiryakov, S. (2009). On the Extra Mode and Inconsistency of Horava Gravity. JHEP, 0910, 029. [arXiv:0906.3046] [hep-th].ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    van Dam, H., & Veltman, M. J. G. (1970). Massive and massless Yang-Mills and gravitational fields. Nucl. Phys. B, 22, 397.ADSCrossRefGoogle Scholar
  11. 11.
    V. I. Zakharov, “Linearized gravitation theory and the graviton mass”, JETP Lett. 12, 312 (1970) [Pisma, Zh. Eksp. Teor. Fiz. 12, 447 (1970)].Google Scholar
  12. 12.
    Arkani-Hamed, N., Georgi, H., & Schwartz, M. D. (2003). Effective field theory for massive gravitons and gravity in theory space. Annals Phys., 305, 96. [hep-th/0210184].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Charmousis, C., Niz, G., Padilla, A., & Saffin, P. M. (2009). Strong coupling in Horava gravity. JHEP, 0908, 070. arXiv:0905.2579 [hep-th].

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of PhysicsNagoya UniversityNagoyaJapan

Personalised recommendations