Advertisement

Causal Dynamical Triangulation

  • Yuki SatoEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter we argue exactly solvable 2-dimensional Causal Dynamical Triangulations (CDT) and their generalization called generalized CDT. In 2.1 we introduce new multicritical models which describe the matter-coupled version of CDT and generalized CDT; especially we focus on the third-order multicritical point where the conformal field theory with the central charge, \(c=-22/5\), couples to (the generalized) CDT. In 2.2 we extend the generalized CDT based on the string field theory of the generalized CDT in such a way that the space-time foliation is preserved; the wavefunction of the Universe in the extended model can be obtained perturbatively. We also show that there exist a matrix model description of the extended model.

Keywords

Multicritical Matrix models Causal dynamical triangulations Non-critical string field theory 

References

  1. 1.
    Kazakov, V. A. (1986). Ising model on a dynamical planar random lattice: Exact solution. Physics Letter A, 119, 140.ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    Staudacher, M. (1990). The Yang-lee edge singularity on a dynamical planar random surface. Nuclear Physics B, 336, 349.ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ambjorn, J., & Loll, R. (1998). Nonperturbative Lorentzian quantum gravity, causality and topology change. Nuclear Physics B, 536, 407. [hep-th/9805108].ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ambjorn, J., Glaser, L., Gorlich, A., & Sato, Y. (2012). New multicritical matrix models and multicritical 2d CDT. Physics Letter B, 712, 109. arXiv:1202.4435 [hep-th].
  5. 5.
    Moore, G. W., Seiberg, N., & Staudacher, M. (1991). Nuclear Physics B, 362, 665.ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Glaser, L. (2012). Coupling dimers to CDT. arXiv:1210.4063 [hep-th].
  7. 7.
    Atkin, M. R., & Zohren, S. (2012). On the quantum geometry of multi-critical CDT. JHEP, 1211, 037. arXiv:1203.5034 [hep-th].
  8. 8.
    Watabiki, Y. (1993). Analytic study of fractal structure of quantized surface in two-dimensional quantum gravity. Progress of Theoretical Physics Supplement, 114, 1.ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    Atkin, M. R., & Zohren, S. (2012). An analytical analysis of CDT coupled to dimer-like matter. Physics Letter B, 712, 445. arXiv:1202.4322 [hep-th].
  10. 10.
    Kawai, H., Kawamoto, N., Mogami, T., & Watabiki, Y. (1993). Transfer matrix formalism for two-dimensional quantum gravity and fractal structures of space-time. Physics Letter B, 306, 19. [hep-th/9302133].ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ambjorn, J., & Watabiki, Y. (1995). Scaling in quantum gravity. Nuclear Physics B, 445, 129. [hep-th/9501049].ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Aoki, H., Kawai, H., Nishimura, J., & Tsuchiya, A. (1996). Operator product expansion in two-dimensional quantum gravity. Nuclear Physics B, 474, 512. [hep-th/9511117].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Ambjorn, J., Anagnostopoulos, K. N., Ichihara, T., Jensen, L., Kawamoto, N., Watabiki, Y., et al. (1997). Quantum geometry of topological gravity. Physics Letter B, 397, 177. [hep-lat/9611032].ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ambjorn, J., Anagnostopoulos, K., Ichihara, T., Jensen, L., Kawamoto, N., Watabiki, Y., et al. (1998). The quantum space-time of \(\rm {c}= -2\) gravity. Nuclear Physics B, 511, 673. [hep-lat/9706009].ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ambjorn, J., & Anagnostopoulos, K. N. (1997). Quantum geometry of 2-D gravity coupled to unitary matter. Nuclear Physics B, 497, 445. [hep-lat/9701006].ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ambjorn, J., Anagnostopoulos, K. N., Magnea, U., & Thorleifsson, G. (1996). Geometrical interpretation of the KPZ exponents. Physics Letter B, 388, 713. [hep-lat/9606012].ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    Duplantier, B. (2011) The hausdorff dimension of two-dimensional quantum gravity. arXiv:1108.3327 [math-ph].
  18. 18.
    Ambjorn, J., Anagnostopoulos, K. N., Loll, R., & Pushkina, I. (2009). Shaken, but not stirred: Potts model coupled to quantum gravity. Nuclear Physics B, 807, 251. arXiv:0806.3506 [hep-lat].
  19. 19.
    Ambjorn, J., Anagnostopoulos, K. N., & Loll, R. (1999). A new perspective on matter coupling in 2-D quantum gravity. Physics Review D, 60, 104035. [hep-th/9904012].ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    Ambjorn, J., Anagnostopoulos, K. N., & Loll, R. (2000). Crossing the \(\rm {c} = 1\) barrier in 2-D Lorentzian quantum gravity. Physics Review D, 61, 044010. [hep-lat/9909129].ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    Ambjorn, J., Goerlich, A. T., Jurkiewicz, J., & Zhang, H.-G. (2012). Pseudo-topological transitions in 2D gravity models coupled to massless scalar fields. Nuclear Physics B, 863, 421. arXiv:1201.1590 [gr-qc].
  22. 22.
    Fuji, H., Sato, Y., & Watabiki, Y. (2011). Causal dynamical triangulation with extended interactions in \(1+1\) dimensions. Physics Letter B, 704, 582. arXiv:1108.0552 [hep-th].
  23. 23.
    Ishibashi, N., & Kawai, H. (1993). String field theory of noncritical strings. Physics Letter B, 314, 190. [hep-th/9307045].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Ishibashi, N., & Kawai, H. (1994). String field theory of c ¡= 1 noncritical strings. Physics Letter B, 322, 67. [hep-th/9312047].ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Ambjorn, J., Loll, R., Watabiki, Y., Westra, W., & Zohren, S. (2008). A string field theory based on causal dynamical triangulations. JHEP, 0805, 032. arXiv:0802.0719 [hep-th].
  26. 26.
    Ambjorn, J., Loll, R., Watabiki, Y., Westra, W., & Zohren, S. (2008). A new continuum limit of matrix models. Physics Letter B, 670, 224. arXiv:0810.2408 [hep-th].
  27. 27.
    Ambjorn, J., Loll, R., Watabiki, Y., Westra, W., & Zohren, S. (2008). A matrix model for 2D quantum gravity defined by causal dynamical triangulations. Physics Letter B, 665, 252. arXiv:0804.0252 [hep-th].
  28. 28.
    Kostov, I. K. (1989). Nuclear Physics B, 326, 583.ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    Kostov, I. K. (1991). Physics Letter B, 266, 42.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Kostov, I. K. (1992). Nuclear Physics B, 376, 539.ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    Kostov, I. K. (1989). O (n) vector model on a planar random lattice: Spectrum of anomalous dimensions. Modern Physics Letters A, 4, 217.ADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    Ambjorn, J., Anagnostopoulos, K. N., Jurkiewicz, J., & Kristjansen, C. F. (1998). The concept of time in 2-D gravity. JHEP, 9804, 016. [hep-th/9802020].ADSCrossRefMathSciNetGoogle Scholar
  33. 33.
    Ambjorn, J., Kristjansen, C., & Watabiki, Y. (1997). The two point function of \(\rm {c} = -2\) matter coupled to 2-D quantum gravity. Nuclear Physics B, 504, 555. [hep-th/9705202].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of PhysicsNagoya UniversityNagoyaJapan

Personalised recommendations