• Yuki SatoEmail author
Part of the Springer Theses book series (Springer Theses)


The aim of this chapter is to provide all basic information necessary to read the thesis and to clarify our stance on discussing quantum gravity. Through Sect. 1.1, one can understand why we think that an object called space-time foliation is useful in quantum gravity. The book treats two theories of gravity with the space-time foliation: Causal Dynamical Triangulations (CDT) and n-DBI gravity; the following sections are devoted to explaining their fundamental ideas and to supplements for understanding the theoretical frameworks. Namely, since CDT is a lattice formulation of quantum gravity, in Sect. we show how to put gravity on a lattice with and without the space-time foliation; Sect. 1.3 leads readers to n-DBI gravity starting with the idea of the 3 + 1 decomposition which is a standard way to investigate the gravitational physics with the space-time filiation.


Space-time foliation (Causal) Dynamical triangulations Regge action n-DBI gravity ADM formalism Hořava-Lifshitz gravity. 


  1. 1.
    Teitelboim, C. (1983). Causality versus gauge invariance in quantum gravity and supergravity. Physical Review Letters, 50, 705.ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    Wheeler, J. A. (1970). In R. Gilbert, & R. Newton (Eds.) Analytical methods in mathematical physics. New York: Gordon and Breach.Google Scholar
  3. 3.
    Ambjorn, J., & Loll, R. (1998). Non-perturbative Lorentzian quantum gravity, causality and topology change. Nuclear Physics B, 536, 407. [hep-th/9805108].ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ambjorn, J., Gorlich, A., Jurkiewicz, J., & Loll, R. (2008). Planckian birth of the quantum de sitter universe. Physical Review Letters, 100, 091304. arXiv:0712.2485 [hep-th].
  5. 5.
    Jacobson, T. Einstein-aether gravity: A Status report, PoS QG -PH (2007) 020. arXiv:0801.1547 [gr-qc].
  6. 6.
    Herdeiro, C., & Hirano, S. (2012). Scale invariance and a gravitational model with non-eternal inflation. Journal of Cosmology and Astroparticle Physics, 1205, 031. arXiv:1109.1468 [hep-th].
  7. 7.
    Herdeiro, C., Hirano, S., & Sato, Y. (2011). n-DBI gravity. Physical Review D, 84, 124048. arXiv:1110.0832 [gr-qc].
  8. 8.
    Coelho, F. S., Herdeiro, C., Hirano, S., & Sato, Y. (2012). On the scalar graviton in n-DBI gravity. Physics Letters B, 86, 064009. arXiv:1205.6850 [hep-th].
  9. 9.
    Ambjorn, J., Goerlich, A., Jurkiewicz, J., & Loll, R. (2012). Nonperturbative Quantum Gravity. Physics Reports, 519, 127. arXiv:1203.3591 [hep-th].
  10. 10.
    Regge, T. (1961). General relativity without coordinates. Nuovo Cimento Series, 19, 558.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Weyl, H. (1922). Space, time, matter. London: Methuen.zbMATHGoogle Scholar
  12. 12.
    Codello, A., Percacci, R., & Rahmede, C. (2009). Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation. Annals of Physics, 324, 414. arXiv:0805.2909 [hep-th].
  13. 13.
    Reuter, M., & Saueressig, F. (2007). Functional Renormalization Group Equations, Asymptotic Safety, and Quantum Einstein Gravity. arXiv:0708.1317 [hep-th] (Based on lectures given by M.R. at the “First Quantum Geometry and Quantum Gravity School”, Zakopane, Poland, March 2007, and the “Summer School on Geometric and Topological Methods for Quantum Field Theory”, Villa de Leyva, Colombia, July 2007, and by F.S. at NIKHEF, Amsterdam, The Netherlands, June 2006).
  14. 14.
    Niedermaier, M., & Reuter, M. (2006). The asymptotic safety scenario in quantum gravity. Living Reviews in Relativity, 9, 5.ADSCrossRefGoogle Scholar
  15. 15.
    Hamber, H. W., & Williams, R. M. (2005). Nonlocal effective gravitational field equations and the running of Newton’s G. Physical Review D, 72, 044026. [hep-th/0507017].ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    Christiansen, N., Litim, D. F., Pawlowski, J. M., & Rodigast, A. (2014). Fixed points and infrared completion of quantum gravity. Physics Letters B728, 114. arXiv:1209.4038 [hep-th].
  17. 17.
    Weinberg, S. (1979). Ultraviolet divergences in quantum theories of gravitation. In S. W. Hawking, W. Israel (Eds.) General relativity: Einstein centenary survey  (pp. 790–831) Cambridge: Cambridge University Press.Google Scholar
  18. 18.
    Reuter, M. (1998). Nonperturbative evolution equation for quantum gravity. Physical Review D, 57, 971. [hep-th/9605030].ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    Ponzano, G., & Regge, T. (1968). In F. Bloch (Ed.) Spectroscopic and group theoretical methods in physics Amsterdam: North-Holland.Google Scholar
  20. 20.
    Turaev, V. G., & Viro, O. Y. (1992). State sum invariants of 3 manifolds and quantum 6j symbols. Topology, 31, 865.CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Ambjorn, J., Durhuus, B., & Frohlich, J. (1985). Diseases of triangulated random surface models, and possible cures. Nuclear Physics B, 257, 433.ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    Ambjorn, J., Durhuus, B., Frohlich, J., & Orland, P. (1986). The appearance of critical dimensions in regulated string theories. Nuclear Physics B, 270, 457.ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    David, F. (1985). Planar diagrams, two-dimensional lattice gravity and surface models. Nuclear Physics B, 257, 45.ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    Billoire, A., & David, F. (1986). Microcanonical simulations of randomly triangulated planar random surfaces. Physics Letters B, 168, 279.ADSCrossRefGoogle Scholar
  25. 25.
    Kazakov, V. A., Migdal, A. A., & Kostov, I. K. (1985). Critical properties of randomly triangulated planar random surfaces. Physics Letters B, 157, 295.ADSCrossRefMathSciNetGoogle Scholar
  26. 26.
    Boulatov, D. V., Kazakov, V. A., Kostov, I. K., & Migdal, A. A. (1986). Analytical and numerical study of the model of dynamically triangulated random surfaces. Nuclear Physics B, 275, 641.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Ambjorn, J., Jurkiewicz, J., & Loll, R. (2001). Dynamically triangulating Lorentzian quantum gravity. Nuclear Physics B, 610, 347. [hep-th/0105267].ADSCrossRefMathSciNetGoogle Scholar
  28. 28.
    Ambjorn, J., Loll, R., Watabiki, Y., Westra, W., & Zohren, S. (2008). Topology change in causal quantum gravity. arXiv:0802.0896 [hep-th] (proceedings of the workshop JGRG 17 (Nagoya, Japan, December 2007)).
  29. 29.
    Ambjorn, J., Gorlich, A., Jurkiewicz, J. & Loll, R. (2010). CDT—an entropic theory of quantum gravity. arXiv:1007.2560 [hep-th] (Lectures presented at the “School on Non-Perturbative Methods in Quantum Field Theory” and the “Workshop on Continuum and Lattice Approaches to Quantum Gravity”, Sussex, September 15th–19th 2008. To appear as a contribution to a Springer Lecture Notes in Physics book).
  30. 30.
    Ambjorn, J., Chekhov, L., Kristjansen, C. F., & Makeenko, Y. (1993). Matrix model calculations beyond the spherical limit. Nuclear Physics B, 404, 127 [Erratum-ibid. B 449 (1995) 681] [hep-th/9302014].Google Scholar
  31. 31.
    Ambjorn, J., Loll, R., Watabiki, Y., Westra, W., & Zohren, S. (2008). A new continuum limit of matrix models. Physics Letters B, 670, 224. arXiv:0810.2408 [hep-th].
  32. 32.
    Polyakov, A. M. (1981). Quantum geometry of bosonic strings. Physics Letters B, 103, 207.ADSCrossRefMathSciNetGoogle Scholar
  33. 33.
    Nakayama, Y. (2004). Liouville field theory: A decade after the revolution. International Journal of Modern Physics A, 19, 2771. [hep-th/0402009].ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    Ambjorn, J., Loll, R., Watabiki, Y., Westra, W., & Zohren, S. (2008). A matrix model for 2D quantum gravity defined by causal dynamical triangulations. Physics Letters B, 665, 252. arXiv:0804.0252 [hep-th].
  35. 35.
    Arnowitt, R. L., Deser, S., & Misner, C. W. (1960). Canonical variables for general relativity. Physical Review, 117, 1595.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Arnowitt, R. L., Deser, S., & Misner, C. W. (2008). The dynamics of general relativity. General Relativity and Gravitation, 40, 1997–2027. arXiv:gr-qc/0405109.
  37. 37.
    Khoury, J., Miller, G. E. J. & Tolley, A. J. (2012). Spatially covariant theories of a transverse, traceless graviton, part I: Formalism. Physical Review D, 85, 084002. arXiv:1108.1397 [hep-th].
  38. 38.
    Bojowald, M. (2010). Canonical gravity and applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  39. 39.
    Horava, P. (2009). Quantum gravity at a Lifshitz point. Physical Review D, 79, 084008. arXiv:0901.3775 [hep-th].
  40. 40.
    Henneaux, M., Kleinschmidt, A., & Gomez, G. L. (2010). A dynamical inconsistency of Horava gravity. Physical Review D, 81, 064002. arXiv:0912.0399 [hep-th].
  41. 41.
    Blas, D., Pujolas, O., & Sibiryakov, S. (2009). On the extra mode and inconsistency of Horava gravity. Journal of High Energy Physics, 0910, 029. arXiv:0906.3046 [hep-th].
  42. 42.
    Charmousis, C., Niz, G., Padilla, A., & Saffin, P. M. (2009). Strong coupling in Horava gravity. Journal of High Energy Physics, 0908, 070. arXiv:0905.2579 [hep-th].
  43. 43.
    Blas, D., Pujolas, O., & Sibiryakov, S. (2010). Consistent extension of Horava gravity. Physical Review Letters, 104, 181302. arXiv:0909.3525 [hep-th].
  44. 44.
    Lemaître, G. (1927). Un Univers homogeéne de masse constante et de rayon croissant rendant compte de la vitesse radiale des nbuleuses extra-galactiques. Annales Societatis Science Bruxelles A, 47, 49.ADSGoogle Scholar
  45. 45.
    Hubble, E. (1929). A relation between distance and radial velocity among extra-galactic nebulae. Proceedings of the National Academy of Sciences, 15, 168.ADSCrossRefzbMATHGoogle Scholar
  46. 46.
    Guth, A. H. (1981). The inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D, 23, 347–356.ADSCrossRefGoogle Scholar
  47. 47.
    Linde, A. D. (1982). A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Physics Letters B, 108, 389.ADSCrossRefMathSciNetGoogle Scholar
  48. 48.
    Linde, A. D. (1983). Chaotic inflation. Physics Letters B, 129, 177.ADSCrossRefMathSciNetGoogle Scholar
  49. 49.
    Albrecht, A., & Steinhardt, P. J. (1982). Cosmology for grand unified theories with radiatively induced symmetry breaking. Physical Review Letters, 48, 1220.ADSCrossRefGoogle Scholar
  50. 50.
    Starobinsky, A. A. (1980). A new type of isotropic cosmological models without singularity. Physics Letters B, 91, 99–102.ADSCrossRefGoogle Scholar
  51. 51.
    Starobinsky, A. A. (1979). Relict gravitation radiation spectrum and initial state of the universe. JETP Letters, 30, 682–685. (In Russian).ADSGoogle Scholar
  52. 52.
    Sato, K. (1981). First order phase transition of a vacuum and expansion of the universe. Monthly Notices of the Royal Astronomical Society, 195, 467.ADSGoogle Scholar
  53. 53.
    Polyakov, A. M. (2006). Beyond space-time [hep-th/0602011] (based on the remarks made at the 23 Solvay Conference).Google Scholar
  54. 54.
    Maldacena, J. M. (1998). The Large N limit of superconformal field theories and supergravity. Advanced Theories in Mathematical Physics, 2, 231. [hep-th/9711200].ADSzbMATHMathSciNetGoogle Scholar
  55. 55.
    Gibbons, G. W., & Hawking, S. W. (1977). Action integrals and partition functions in quantum gravity. Physical Review D, 15, 2752.ADSCrossRefMathSciNetGoogle Scholar
  56. 56.
    York, J. W. (1972). Role of conformal three geometry in the dynamics of gravitation. Physical Review Letters, 28, 1082.ADSCrossRefGoogle Scholar
  57. 57.
    Delsate, T., & Steinhoff, J. (2012). New insights on the matter-gravity coupling paradigm. Physical Review Letters, 109, 021101. arXiv:1201.4989 [gr-qc].
  58. 58.
    Arkani-Hamed, N., Cheng, H.-C., Luty, M. A., & Mukohyama, S. (2004). Ghost condensation and a consistent infrared modification of gravity. Journal of High Energy Physics, 0405, 074. [hep-th/0312099].CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of PhysicsNagoya UniversityNagoyaJapan

Personalised recommendations