Photophysical Properties of Lanthanide Complexes with Asymmetric Dodecahedron Structures
- 610 Downloads
Abstract
Distorted coordination structures and luminescence properties of novel lanthanide complexes with oxo-linked bidentate phosphane oxide ligands, 4,5-bis(diphenylphosphoryl)-9,9-dimethylxanthene (xantpo), 4,5-bis(di-tert-butylphosphoryl)-9,9-dimethylxanthene (tBu-xantpo) and bis[(2-diphenylphosphoryl)phenyl]ether (dpepo) and low-vibrational frequency hexafluoroacetylacetonato (hfa) ligands are reported. The lanthanide complexes exhibit characteristic square antiprism and trigonal dodecahedron structures with octa-coordinated oxygen atoms. The luminescence properties of these complexes are characterized by their emission quantum yields, emission lifetimes, and their radiative and non-radiative rate constants. Lanthanide complexes with dodecahedron structures offer markedly high emission quantum yields (Eu: 55–72 %, Sm: 2.4–5.0 % in acetone-d 6) due to enhancement of the electric dipole transition and suppression of vibrational relaxation. These remarkable luminescence properties are elucidated in terms of their distorted coordination structures.
Keywords
Samarium Coordination structure Dodecahedron Asymmetry Shape measureReferences
- 1.S.F. Mason, R.D. Peacock, B. Stewart, Chem. Phys. Lett. 29, 149 (1974)CrossRefGoogle Scholar
- 2.S.F. Mason, J. Indian Chem. Soc. 63, 73 (1986)Google Scholar
- 3.A.F. Kirby, F.S. Richardson, J. Phys. Chem. 87, 2544 (1983)CrossRefGoogle Scholar
- 4.M. Montalti, L. Prodi, N. Zaccheroni, L. Charbonnière, L. Douce, R. Ziessel, J. Am. Chem. Soc. 123, 12694 (2001)CrossRefGoogle Scholar
- 5.K. Driesen, P. Lenaerts, K. Binnemans, C. Görller-Walrand, Phys. Chem. Chem. Phys. 4, 552 (2002)CrossRefGoogle Scholar
- 6.W. Liu, T. Jiao, Y. Li, Q. Liu, M. Tan, H. Wang, L. Wang, J. Am. Chem. Soc. 126, 2280 (2004)CrossRefGoogle Scholar
- 7.J.P. Cross, M. Lauz, P.D. Badger, S. Petoud, J. Am. Chem. Soc. 126, 16278 (2004)CrossRefGoogle Scholar
- 8.P. Nockemann, B. Thijs, N. Postelmans, K.V. Hecke, L.V. Meervelt, K. Binnemans, J. Am. Chem. Soc. 128, 13658 (2006)CrossRefGoogle Scholar
- 9.A. Wada, M. Watanabe, Y. Yamanoi, T. Nankawa, K. Namiki, M. Yamasaki, M. Murata, H. Nishihara, Bull. Chem. Soc. Jpn 80, 335 (2007)CrossRefGoogle Scholar
- 10.J. Xu, E. Radkov, M. Ziegler, K.N. Raymond, Inorg. Chem. 39, 4156 (2000)CrossRefGoogle Scholar
- 11.T. Harada, Y. Nakano, M. Fujiki, M. Naito, T. Kawai, Y. Hasegawa, Inorg. Chem. 48, 11242 (2009)CrossRefGoogle Scholar
- 12.T. Harada, H. Tsumatori, K. Nishiyama, J. Yuasa, Y. Hasegawa, T. Kawai, Inorg. Chem. 51, 6476 (2012)CrossRefGoogle Scholar
- 13.P.W.N.M. van Leeuwen, P.C.J. Kamer, J.N.H. Reek, P. Dierkes, Chem. Rev. 100, 2741 (2000)CrossRefGoogle Scholar
- 14.O. Moudam, B.C. Rowan, M. Alamiry, P. Richardson, B.S. Richards, A.C. Jones, N. Robertson, Chem. Commun. 6649 (2009)Google Scholar
- 15.K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Tsukahara, Y. Wada, Thin Solid Films 516, 2376 (2008)CrossRefGoogle Scholar
- 16.D.A. Johnson, A.B. Waugh, T.W. Hambley, J.C. Taylor, J. Fluorine Chem. 27, 371 (1985)CrossRefGoogle Scholar
- 17.K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, Y. Wada, J. Phys. Chem. A 111, 3029 (2007)CrossRefGoogle Scholar
- 18.C. Görller-Walrand, L. Fluyt, A. Ceulemans, W.T. Carnall, J. Chem. Phys. 95, 3099 (1991)CrossRefGoogle Scholar
- 19.M.H.V. Werts, R.T.F. Jukes, J.W. Verhoeven, Phys. Chem. Chem. Phys. 4, 1542 (2002)CrossRefGoogle Scholar
- 20.H. Kawai, C. Zhao, S. Tsuruoka, T. Yoshida, Y. Hasegawa, T. Kawai, J. Alloys Compd. 488, 612 (2009)CrossRefGoogle Scholar
- 21.Y. Hasegawa, T. Ohkubo, T. Nakanishi, A. Kobayashi, M. Kato, T. Seki, H. Ito, K. Fushimi, Eur. J. Inorg. Chem. 2013, 5911 (2013)Google Scholar