Advertisement

Characteristic Structures and Photophysical Properties of Nona-Coordinated Eu(III) Complexes with Tridentate Phosphine Oxides

  • Kohei MiyataEmail author
Chapter
  • 596 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Structures and photophysical properties of f-block metal complexes with tandem-connected tridentate phosphane oxide ligands (bis(o-diphenylphosphoryl phenyl)phenylphosphane oxide)tris(hexafluoroacetylacetonato)europium(III) (Eu(hfa)3(dpppo)) (bis(o-diphenylphosphorylpyridyl)phenylphosphane oxide)tris(hexafluoroacetylacetonato)europium(III) (Eu(hfa)3(dppypo)) and (bis(o-diphenylphosphorylbenzothienyl)phenylphosphane oxide)tris(hexafluoroacetyl acetonato)europium(III) (Eu(hfa)3(dpbtpo)), are reported. The coordination geometries of Eu(hfa)3(dpppo) and Eu(hfa)3(dpbtpo) provide characteristic distorted, capped square antiprism structures with nona-coordinated oxygen atoms. The emission properties related to the electric transition are characterized by the emission spectra, the emission quantum yields, the emission lifetimes, and the radiative and non-radiative rate constants. Eu(III) complexes with tridentate phosphane oxide ligands offer relatively high emission quantum yields (>60 % in acetone-d 6) due to their low-symmetric and low-frequency vibrational structures. The electric dipole transition intensities in the emission spectra depend on the chemical structures of tridentate phosphane oxides. The characteristic photophysical properties of polyhedral f-block metal complexes, nona-coordinated Eu(III) complexes with tridentate phosphane oxide, are demonstrated for the first time.

Keywords

Tridentate Polydentate ligand Nona-Coordinated Radiative rate 

References

  1. 1.
    T. Justel, H. Nikol, C. Ronda, Angew. Chem. Int. Ed. 37, 3084 (1998)CrossRefGoogle Scholar
  2. 2.
    J. Kido, Y. Okamoto, Chem. Rev. 102, 2357 (2002)CrossRefGoogle Scholar
  3. 3.
    J. Yu, L. Zhou, H. Zhang, Y. Zheng, H. Li, R. Deng, Z. Peng, Z. Li, Inorg. Chem. 44, 1611 (2005)CrossRefGoogle Scholar
  4. 4.
    H. Xu, K. Yin, W. Huang, J. Phys. Chem. C 114, 1674 (2010)CrossRefGoogle Scholar
  5. 5.
    K. Kuriki, Y. Koike, Y. Okamoto, Chem. Rev. 102, 2347 (2002)CrossRefGoogle Scholar
  6. 6.
    N. Weibel, L.J. Charbonniere, M. Guardigli, A. Roda, R. Ziessel, J. Am. Chem. Soc. 126, 4888 (2004)CrossRefGoogle Scholar
  7. 7.
    J.-C.G. Bunzli, C. Piguet, Chem. Soc. Rev. 34, 1048 (2005)CrossRefGoogle Scholar
  8. 8.
    S. Faulkner, B.P. Burton-Pye, Chem. Commun. 259 (2005)Google Scholar
  9. 9.
    J. Yu, D. Parker, R. Pal, R.A. Poole, M.J. Cann, J. Am. Chem. Soc. 128, 2294 (2006)CrossRefGoogle Scholar
  10. 10.
    B. McMahon, P. Mauer, C.P. McCoy, T.C. Lee, T. Gunnlaugsson, J. Am. Chem. Soc. 131, 17542 (2009)CrossRefGoogle Scholar
  11. 11.
    V.S. Sastri, J.-C.G. Bünzli, V. Ramachandra Rao, G.V.S. Rayudu, J.R. Perumareddi, Modern Aspects of Rare Earths and Their Complexes, (Elsevier, Amsterdam, 2003)Google Scholar
  12. 12.
    K. Lunstroot, P. Nockemann, K.V. Hecke, L.V. Meervelt, C. Görller-Walrand, K. Binnemans, K. Driesen, Inorg. Chem. 48, 3018 (2009)CrossRefGoogle Scholar
  13. 13.
    S. Petoud, S.M. Cohen, J.-C.G. Bunzli, K.N. Raymond, J. Am. Chem. Soc. 125, 13324 (2003)CrossRefGoogle Scholar
  14. 14.
    Y. Hasegawa, Y. Wada, S. Yanagida, J. Photochem. Photobiol. C: Photochem. Rev. 5, 183–202 (2004)CrossRefGoogle Scholar
  15. 15.
    A.F. Kirby, F.S. Richardson, J. Phys. Chem. 87, 2544 (1983)CrossRefGoogle Scholar
  16. 16.
    K. Binnemans, R.V. Deun, C. Görller-Walrand, S.R. Collinson, F. Martin, D.W. Bruce, C. Wickleder, Phys. Chem. Chem. Phys. 2, 3753 (2000)CrossRefGoogle Scholar
  17. 17.
    S.F. Mason, J. Indian Chem. Soc. 63, 73 (1986)Google Scholar
  18. 18.
    F. Gan, Laser Materials (World Scientific, Singapore, 1995)CrossRefGoogle Scholar
  19. 19.
    A. Wada, M. Watanabe, Y. Yamanoi, T. Nankawa, K. Namiki, M. Yamasaki, M. Murata, H. Nishihara, Bull. Chem. Soc. Jpn 80, 335 (2007)CrossRefGoogle Scholar
  20. 20.
    G. Stein, E. Würzberg, J. Chem. Phys. 62, 208 (1975)CrossRefGoogle Scholar
  21. 21.
    S.V. Eliseeva, J.-C.G. Bünzli, Chem. Soc. Rev. 39, 189 (2010)CrossRefGoogle Scholar
  22. 22.
    S.V. Eliseeva, O.V. Kotova, F. Gumy, S.N. Semenov, V.G. Kessler, L.S. Lepnev, J.-C.G. Bünzli, N.P. Kuzmina, J. Phys. Chem. A 112, 3614 (2008)CrossRefGoogle Scholar
  23. 23.
    Q.-B. Bo, H.-Y. Wang, D.-Q. Wang, Z.-W. Zhang, J.-L. Miao, G.-X. Sun, Inorg. Chem. 50, 10163 (2011)CrossRefGoogle Scholar
  24. 24.
    L.J. Charbonnire, R. Ziessel, M. Montalti, L. Prodi, C. Boehme, G. Wipff, J. Am. Chem. Soc. 124, 7779 (2002)CrossRefGoogle Scholar
  25. 25.
    S. Faulkner, J.A. Pope, J. Am. Chem. Soc. 125, 10526 (2003)CrossRefGoogle Scholar
  26. 26.
    G.S. Kottas, M. Mehlstäubl, R. Fröhlich, L. De Cola, Eur. J. Inrog. Chem. 22, 3465 (2007)CrossRefGoogle Scholar
  27. 27.
    M. Seitz, E.G. Moore, A.J. Ingram, G. Muller, K.N. Raymond, J. Am. Chem. Soc. 129, 15468 (2007)CrossRefGoogle Scholar
  28. 28.
    S. Petoud, G. Muller, E.G. Moore, J. Xu, J. Sokolnicki, J.P. Riehl, U.N. Le, S.M. Cohen, K.N. Raymond, J. Am. Chem. Soc. 129, 77 (2007)CrossRefGoogle Scholar
  29. 29.
    E. Deiters, B. Song, A. Chauvin, C.D.B. Vandevyver, F. Gumy, J.-C.G. Bünzli, Chem. Eur. J. 15, 885 (2009)CrossRefGoogle Scholar
  30. 30.
    D. Imperio, G.B. Giovenzana, G.-L. Law, D. Parker, J.W. Walton, Dalton Trans. 39, 9897 (2010)CrossRefGoogle Scholar
  31. 31.
    J. Xu, T.M. Corneillie, E.G. Moore, G.-L. Law, N.G. Butlin, K.N. Raymond, J. Am. Chem. Soc. 133, 19900 (2011)CrossRefGoogle Scholar
  32. 32.
    Y. Hasegawa, S. Tsuruoka, T. Yoshida, H. Kawai, T. Kawai, J. Phys. Chem. A 112, 803 (2008)CrossRefGoogle Scholar
  33. 33.
    M.T. Whited, E. Rivard, J.C. Peters, Chem. Commun. 1613 (2006)Google Scholar
  34. 34.
    J.G. Hartley, L.M. Venanzi, D.C. Goodall, J. Chem. Soc. 3930 (1963)Google Scholar
  35. 35.
    A. Heynderickx, A. Samat, R. Guglielmetti, Synthesis 2, 213 (2002)CrossRefGoogle Scholar
  36. 36.
    K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, Y. Tsukahara, Y. Wada, Thin Solid Films 516, 2376 (2008)CrossRefGoogle Scholar
  37. 37.
    R.B. King, J. Am. Chem. Soc. 91, 7211 (1969)CrossRefGoogle Scholar
  38. 38.
    K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, Y. Wada, J. Phys. Chem. A 111, 3029 (2007)CrossRefGoogle Scholar
  39. 39.
    T. Nakagawa, Y. Hasegawa, T. Kawai, J. Phys. Chem. A 112, 5096 (2008)CrossRefGoogle Scholar
  40. 40.
    T. Nakagawa, K. Atsumi, T. Nakashima, Y. Hasegawa, T. Kawai, Chem. Lett. 36, 372 (2007)CrossRefGoogle Scholar
  41. 41.
    T. Nakagawa, Y. Hasegawa, T. Kawai, Chem. Commun. 5630 (2009)Google Scholar
  42. 42.
    S.F. Mason, J. Indian Chem. Soc. 63, 73 (1986)Google Scholar
  43. 43.
    J.J. Dallara, M.F. Reid, F.S. Richardson, J. Phys. Chem. 88, 3587 (1984)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.ADEKA CorporationTokyoJapan

Personalised recommendations