General Introduction
- 618 Downloads
Abstract
The luminescence properties of rare-earth compounds have been fascinating many researchers for decades. Attractive features of luminescent lanthanide compounds are their line-like emission, which results in a high color purity of the emitted light. The trivalent ions of the lanthanide series are characterized by a gradual filling of the 4f orbitals, from 4f0 to 4f14. Several lanthanide ions show luminescence in the visible or near-infrared spectral regions upon irradiation with ultraviolet radiation. The color of the emitted light depends on the lanthanide ion. For instance, Eu(III) emits red light, Tb(III) green light, Sm(III) orange light, and Tm(III) blue light. Yb(III), Nd(III), and Er(III) are well-known for their near-infrared luminescence. Therefore, lanthanide(III) compounds are the popular luminescent materials for application in EL device, fluorescent light, optical fiber, laser, bio-sensing, and so on.
Keywords
Luminescence Molecular design Small off-set Vibrational relaxationReferences
- 1.J.-C.G. Bünzli, Luminescent Probes. In Lanthanide Probes in Life, Chemical and Earth Sciences: Theory and Practice (Elsevier, Amsterdam, 1989)Google Scholar
- 2.A.J. Kenyon, Prog. Quantum Electron. 26, 225 (2002)CrossRefGoogle Scholar
- 3.G. Blasse, B.C. Grabmaier, Luminescent Materials (Spinger-Verlag, Berlin, 1994)CrossRefGoogle Scholar
- 4.G. Blasse, Prog. Solid State Chem. 18, 79 (1988)CrossRefGoogle Scholar
- 5.M. Elbanowski, B. Makowsaka, J. Photochem. Photobiol. A 99, 85 (1996)CrossRefGoogle Scholar
- 6.J.-C.G. Bünzli, C. Piguet, Chem. Soc. Rev. 2005, 34 (1048)Google Scholar
- 7.Y. Hasegawa, Y. Wada, S. Yanagida, J. Photochem. Photobiol. C 5, 183 (2004)CrossRefGoogle Scholar
- 8.B.M. Tissue, Chem. Mater. 10, 2837 (1998)CrossRefGoogle Scholar
- 9.K. Binnemans, Chem. Rev. 109, 4283 (2009)CrossRefGoogle Scholar
- 10.S. Freed, S.I. Weissman, F.E. Fortress, H.F. Jacobson, J. Chem. Phys. 7, 824 (1939)CrossRefGoogle Scholar
- 11.S.I. Weissman, J. Chem. Phys. 10, 214 (1942)CrossRefGoogle Scholar
- 12.P. Yuster, S.I. Weissman, J. Chem. Phys. 17, 1182 (1949)CrossRefGoogle Scholar
- 13.I. Hemmila, J. Alloy Compd. 225, 480 (1995)Google Scholar
- 14.K. Binneman, R. Van Deun, C. Gorller-Walrand, S.R. Collinson, F. Martin, D.W. Bruce, C. Wickleder, Phys. Chem. Chem. Phys. 2, 3753 (2000)CrossRefGoogle Scholar
- 15.F.R. Goncalves e Silva, R. Longo, O.L. Malta, C. Piguet, J.-C.G. Bünzli, Phys. Chem. Chem. Phys.2, 5400 (2000)Google Scholar
- 16.D.M. Epstein, L.L. Chappell, H. Khalili, R.M. Supkowski, W.D. Horrocks Jr, J.R. Morrow, Inorg. Chem. 39, 2130 (2000)CrossRefGoogle Scholar
- 17.N. Fatin-Rouge, E. Toth, D. Perret, R.H. Backer, A.E. Merbach, J.-C.G. Bünzli, J. Am. Chem. Soc. 122, 10810 (2000)CrossRefGoogle Scholar
- 18.J.J. Lessmann, W.D. Horrocks Jr, Inorg. Chem. 39, 3114 (2000)CrossRefGoogle Scholar
- 19.M.D. McGehee, M.A. Diaz-Garcia, F. Hide, R. Gupta, E.K. Miller, D. Moses, A.J. Heeger, Appl. Phys. Lett. 72, 1536 (1998)CrossRefGoogle Scholar
- 20.P.J. Skinner, A. Beeby, R.S. Dickins, D. Parker, S. Aime, M. Botta, J. Chem. Soc. Perkin 2 7, 1329 (2000)Google Scholar
- 21.H. Tsukube, M. Hosokubo, M. Wada, S. Shinoda, H. Tamiaki, Inorg. Chem. 40, 740 (2001)CrossRefGoogle Scholar
- 22.M. Latva, H. Takalob, V.M. Mukkala, C. Matachescu, J.C. Rodriguez-Ubis, J. Kankare, J. Lumin. 75, 149 (1997)CrossRefGoogle Scholar
- 23.F. Gutierrrez, C. Tedeschi, L. Maron, J.P. Daudey, R. Poteau, J. Azema, P. Tisnes, C. Picard, Dalton Trans. 1334 (2004)Google Scholar
- 24.R.D. Archer, H. Chen, L.C. Thompson, Inorg. Chem. 37, 2809 (1998)CrossRefGoogle Scholar
- 25.F.R. Goncalves e Silva, O.L. Malta, C. Reinhard, H.U. Gudel, C. Piguet, J.E. Moser, J.-C.G. Bünzli, J. Phys. Chem. A 106, 1670 (2002)Google Scholar
- 26.G.F. De Sa, O.L. Malta, C. De Mello Donega, A.M. Simas, R.L. Longo, P.A. Santa-Cruz, E.F. Da Silva Jr, Coord. Chem. Rev. 196, 165 (2000)Google Scholar
- 27.R. Pal, D. Parker, Chem. Commun. 474 (2007)Google Scholar
- 28.G.S. Kottas, M. Mehlstäubl, R. Fröhlich, L. De Cola, Eur. J. Inrog. Chem. 22, 3465 (2007)CrossRefGoogle Scholar
- 29.S. Petoud, G. Muller, E.G. Moore, J. Xu, J. Sokolnicki, J.P. Riehl, U.N. Le, S.M. Cohen, K.N. Raymond, J. Am. Chem. Soc. 129, 77 (2007)CrossRefGoogle Scholar
- 30.J.P. Leonard, P. Jensen, T. McCabe, J.E. O’Brien, R.D. Peacock, P.E. Kruger, T. Gunnlaugsson, J. Am. Chem. Soc. 129, 10986 (2007)CrossRefGoogle Scholar
- 31.A. De Bettencourt-Dias, S. Viswanathan, A. Rollett, J. Am. Chem. Soc. 129, 15436 (2007)CrossRefGoogle Scholar
- 32.X.Y. Chen, X. Yang, B.J. Holliday, J. Am. Chem. Soc. 130, 1546 (2008)CrossRefGoogle Scholar
- 33.E.G. Moore, J. Xu, C.J. Jocher, I. Castro-Rodriguez, K.N. Raymond, Inorg. Chem. 47, 3105 (2008)CrossRefGoogle Scholar
- 34.O. Moudam, B.C. Rowan, M. Alamiry, P. Richardson, B.S. Richards, A.C. Jones, N. Robertson, Chem. Commun. 6649 (2009)Google Scholar
- 35.M. Osawa, M. Hoshino, T. Wada, F. Hayashi, S. Osanai, J. Phys. Chem. A 113, 10895 (2009)CrossRefGoogle Scholar
- 36.D.P. Li, C.H. Li, J. Wang, L.C. Kang, T. Wu, Y.Z. Li, X.Z. You, Eur. J. Inorg. Chem. 2009, 4844 (2009)Google Scholar
- 37.N.M. Shavaleev, S.V. Eliseeva, R. Scopelliti, J.-C.G. Bünzli, Chem. Eur. J. 15, 10790 (2009)CrossRefGoogle Scholar
- 38.G.E. Kiefer, M. Woods, Inorg. Chem. 48, 11767 (2009)CrossRefGoogle Scholar
- 39.K.A. White, D.A. Chengelis, K.A. Gogick, J. Stehman, N.L. Rosi, S. Petoud, J. Am. Chem. Soc. 131, 18069 (2009)CrossRefGoogle Scholar
- 40.D.B. A. Raj, S. Biju, M.L.P. Reddy, Dalton Trans. 7519 (2009)Google Scholar
- 41.B. McMahon, P. Mauer, C.P. McCoy, T.C. Lee, T. Gunnlaugsson, J. Am. Chem. Soc. 131, 17542 (2009)CrossRefGoogle Scholar
- 42.M.-H. Ha-Thi, J.A. Delaire, V. Michelet, I. Leray, J. Phys. Chem. A 114, 3264 (2010)CrossRefGoogle Scholar
- 43.J.-C.G. Bünzli, Chem. Rev. 110, 2729 (2010)CrossRefGoogle Scholar
- 44.M. Tropiano, N.L. Kilah, M. Morten, H.R.J.J. Davis, P.D. Beer, S. Faulkner, J. Am. Chem. Soc. 133, 11847 (2011)CrossRefGoogle Scholar
- 45.D. Sykes, M.D. Ward, Chem. Commun. 47, 2279 (2011)CrossRefGoogle Scholar
- 46.M. Sturzbecher-Hoehne, C.N.P. Leung, A. D’Aléo, B. Kullgren, A.-L. Prigent, D.K. Shuh, K.N. Raymond, R.J. Abergel, Dalton Trans. 40, 8340 (2011)CrossRefGoogle Scholar
- 47.C.M. Andolina, J.R. Morrow, Eur. J. Inorg. Chem. 2011, 154 (2011)Google Scholar
- 48.J. Andres, A.-S. Chauvin, Inorg. Chem. 50, 10082 (2011)CrossRefGoogle Scholar
- 49.Q.-B. Bo, H.-Y. Wang, D.-Q. Wang, Z.-W. Zhang, J.-L. Miao, G.-X. Sun, Inorg. Chem. 50, 10163 (2011)CrossRefGoogle Scholar
- 50.S.V. Eliseeva, D.N. Pleshkov, K.A. Lyssenko, L.S. Lepnev, J.-C.G. Bünzli, N.P. Kuzmina, Inorg. Chem. 50, 5137 (2011)CrossRefGoogle Scholar
- 51.J. An, C.M. Shade, D.A. Chengelis-Czegan, S. Petoud, N.L. Rosi, J. Am. Chem. Soc. 133, 1220 (2011)CrossRefGoogle Scholar
- 52.D.J. Lewis, P.B. Glover, M.C. Solomons, Z. Pikramenou, J. Am. Chem. Soc. 2011, 133 (1033)Google Scholar
- 53.M. Varlan, B.A. Blight, S. Wang, Chem. Commun. 48, 12059 (2012)CrossRefGoogle Scholar
- 54.D.G. Smith, B.K. McMahon, R. Pal, D. Parker, Chem. Commun. 48, 8520 (2012)CrossRefGoogle Scholar
- 55.R.M. Edkins, D. Sykes, A. Beeby, M.D. Ward, Chem. Commun. 48, 9977 (2012)CrossRefGoogle Scholar
- 56.A. Nonat, M. Regueiro-Figueroa, D. Esteban-Gomez, A. de Blas, T. Rodríguez-Blas, C. Platas-Iglesias, L.J. Charbonnière, Chem. Eur. J. 18, 8163 (2012)CrossRefGoogle Scholar
- 57.S. Nadella, P.M. Selvakumar, E. Suresh, P.S. Subramanian, M. Albrecht, M. Giese, R. Frohlich, Chem. Eur. J. 18, 16784 (2012)CrossRefGoogle Scholar
- 58.D.G. Smith, R. Pal, D. Parker, Chem. Eur. J. 18, 11604 (2012)CrossRefGoogle Scholar
- 59.E.S. Andreiadis, D. Imbert, J. Pécaut, R. Demadrille, M. Mazzanti, Dalton Trans. 41, 1268 (2012)CrossRefGoogle Scholar
- 60.D.J. Lewis, F. Moretta, A.T. Holloway, Z. Pikramenou, Dalton Trans. 41, 13138 (2012)CrossRefGoogle Scholar
- 61.Y.-A. Li, S.-K. Ren, Q.-K. Liu, J.-P. Ma, X. Chen, H. Zhu, Y.-B. Dong, Inorg. Chem. 51, 9629 (2012)CrossRefGoogle Scholar
- 62.S. Mohapatra, S. Adhikari, H. Riju, T.K. Maji, Inorg. Chem. 51, 4891 (2012)CrossRefGoogle Scholar
- 63.A.R. Ramya, D. Sharma, S. Natarajan, M.L.P. Reddy, Inorg. Chem. 51, 8818 (2012)CrossRefGoogle Scholar
- 64.A. de Bettencourt-Dias, P.S. Barber, S. Bauer, J. Am. Chem. Soc. 134, 6987 (2012)CrossRefGoogle Scholar
- 65.M.O. Rodrigues, J.D.L. Dutra, L.A.O. Nunes, G.F. de Sá, W.M. de Azevedo, P. Silva, F.A.A. Paz, R.O. Freire, S.A. Júnior, J. Phys. Chem. C 116, 19951 (2012)CrossRefGoogle Scholar
- 66.K.-N.T. Hua, J. Xu, E.E. Quiroz, S. Lopez, A.J. Ingram, V.A. Johnson, A.R. Tisch, A. de Bettencourt-Dias, D.A. Straus, G. Muller, Inorg. Chem. 51, 647 (2012)CrossRefGoogle Scholar
- 67.A. Ablet, S.-M. Li, W. Cao, X.-J. Zheng, W.-T. Wong, L.-P. Jin, Chem. Asian J. 8, 95 (2013)CrossRefGoogle Scholar
- 68.J. Xu, L. Jia, N. Jin, Y. Ma, X. Liu, W. Wu, W. Liu, Y. Tang, F. Zhou, Chem. Eur. J. 19, 4556 (2013)CrossRefGoogle Scholar
- 69.N. Wartenberg, O. Raccurt, E. Bourgeat-Lami, D. Imbert, M. Mazzanti, Chem. Eur. J. 19, 3477 (2013)CrossRefGoogle Scholar
- 70.Y. Hasegawa, K. Murakoshi, Y. Wada, S. Yanagida, J. Kim, N. Nakashima, T. Yamanaka, Chem. Phys. Lett. 248, 8 (1996)CrossRefGoogle Scholar
- 71.V.S. Sastri, J.-C.G. Bünzli, V.R. Rao, G.V.S. Rayudu, J.R. Perumareddi, In Modern Aspects of Rare Earth and Their Complexes (Elsevier, New York, 2003)Google Scholar
- 72.E.M. Stephens, M.F. Reid, F.S. Richardson, Inorg. Chem. 23, 4611 (1984)CrossRefGoogle Scholar
- 73.M.T. Devlin, E.M. Stephens, M.F. Reid, F.S. Richardson, Inorg. Chem. 26, 1208 (1987)CrossRefGoogle Scholar
- 74.S.F. Mason, R.D. Peacock, B. Stewart, Chem. Phys. Lett. 29, 149 (1974)CrossRefGoogle Scholar
- 75.S.F. Mason, J. Indian Chem. Soc. 63, 73 (1986)Google Scholar
- 76.A.F. Kirby, F.S. Richardson, J. Phys. Chem. 87, 2544 (1983)Google Scholar
- 77.M. Montalti, L. Prodi, N. Zaccheroni, L. Charbonnière, L. Douce, R. Ziessel, J. Am. Chem. Soc. 123, 12694 (2001)CrossRefGoogle Scholar
- 78.K. Driesen, P. Lenaerts, K. Binnemans, C. Görller-Walrand, Phys. Chem. Chem. Phys. 4, 552 (2002)CrossRefGoogle Scholar
- 79.W. Liu, T. Jiao, Y. Li, Q. Liu, M. Tan, H. Wang, L. Wang, J. Am. Chem. Soc. 126, 2280 (2004)CrossRefGoogle Scholar
- 80.J.P. Cross, M. Lauz, P.D. Badger, S. Petoud, J. Am. Chem. Soc. 126, 16278 (2004)CrossRefGoogle Scholar
- 81.P. Nockemann, B. Thijs, N. Postelmans, K.V. Hecke, L.V. Meervelt, K. Binnemans, J. Am. Chem. Soc. 128, 13658 (2006)CrossRefGoogle Scholar
- 82.A. Wada, M. Watanabe, Y. Yamanoi, T. Nankawa, K. Namiki, M. Yamasaki, M. Murata, H. Nishihara, Bull. Chem. Soc. Jpn 80, 335 (2007)CrossRefGoogle Scholar
- 83.Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, S. Yanagida, J. Phys. Chem. A 107, 1697 (2003)CrossRefGoogle Scholar
- 84.T. Jüstel, H. Nikol, C. Ronda, Angew. Chem. Int. Ed. 37, 3084 (1998)CrossRefGoogle Scholar
- 85.J. Kido, Y. Okamoto, Chem. Rev. 102, 2357 (2002)CrossRefGoogle Scholar
- 86.J. Yu, L. Zhou, H. Zhang, Y. Zheng, H. Li, R. Deng, Z. Peng, Z. Li, Inorg. Chem. 44, 1611 (2005)CrossRefGoogle Scholar
- 87.E.S. Wilks, Industrial Polymer Handbook (Wiley-VCH, Weinheim, 2000), p. 291Google Scholar
- 88.K. Manseki, Y. Hasegawa, Y. Wada, S. Yanagida, J. Lumin. 111, 183 (2005)CrossRefGoogle Scholar
- 89.H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Nature 402, 276 (1999)CrossRefGoogle Scholar
- 90.B. Moulton, M.J. Zaworotko, Chem. Rev. 101, 1629 (2001)CrossRefGoogle Scholar
- 91.S.L. James, Chem. Soc. Rev. 32, 276 (2003)CrossRefGoogle Scholar
- 92.S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 43, 2334 (2004)CrossRefGoogle Scholar
- 93.I.G. Georgiev, L.R. MacGillivray, Chem. Soc. Rev. 36, 1239 (2007)CrossRefGoogle Scholar
- 94.R. Cao, D.F. Sun, Y.C. Liang, M.C. Hong, K. Tatsumi, Q. Shi, Inorg. Chem. 41, 2087 (2002)CrossRefGoogle Scholar
- 95.L. Pan, X.Y. Huang, J. Li, Y.G. Wu, N.W. Zheng, Angew. Chem. Int. Ed. 39, 527 (2000)CrossRefGoogle Scholar
- 96.L. Pan, K.M. Adams, H.E. Hernandez, X.T. Wang, C. Zheng, Y. Hattori, K. Kaneko, J. Am. Chem. Soc. 125, 3062 (2003)CrossRefGoogle Scholar
- 97.D. L. Long, A. J. Blake, N. R. Champness, M. Schroder, Chem. Commun. 1369 (2000)Google Scholar
- 98.O. Guillou, C. Daiguebonne, Lanthanide-containing coordination polymers. In Handbook on the Physics and Chemistry of Rare Earths, Vol. 34, Chapter 221, 359, ed by K.A. Gschneidner Jr., J.-C.G. Bünzli, V. Pescharsky (Elsevier, Amsterdam, 2004), p. 359Google Scholar
- 99.J. Rocha, L.D. Carlos, Curr. Opin. Solid State Mater. Sci. 7, 199 (2003)CrossRefGoogle Scholar
- 100.M.D. Allendorf, C.A. Bauer, R.K. Bhakta, R.J.T. Houk, Chem. Soc. Rev. 38, 1330 (2009)CrossRefGoogle Scholar
- 101.M. Eddaoudi, D.B. Moler, H.L. Li, B.L. Chen, T.M. Reineke, M. O’Keeffe, O.M. Yaghi, Acc. Chem. Res. 34, 319 (2001)CrossRefGoogle Scholar
- 102.A.K. Cheetham, C.N.R. Rao, R.K. Feller, Chem. Commun. 4780 (2006)Google Scholar
- 103.C. Daiguebonne, N. Kerbellec, K. Bernot, Y. Gerault, A. Deluzet, O. Guillou, Inorg. Chem. 45, 5399 (2006)CrossRefGoogle Scholar
- 104.X. Guo, G. Zhu, F. Sun, Z. Li, X. Zhao, X. Li, H. Wang, S. Qiu, Inorg. Chem. 45, 2581 (2006)CrossRefGoogle Scholar
- 105.L. Pan, N. Zheng, Y. Wu, S. Han, R. Yang, X. Huang, J. Li, Inorg. Chem. 40, 828 (2001)CrossRefGoogle Scholar
- 106.X.P. Yang, R.A. Jones, J.H. Rivers, R.P.J. Lai, Dalton Trans. 3936 (2007)Google Scholar
- 107.L.D. Carlos, R.A.S. Ferreira, V. de Zea, Bermudez, B. Julian-Lopez, P. Escribano. Chem. Soc. Rev. 40, 536 (2011)Google Scholar
- 108.Y. Hasegawa, Y. Kimura, K. Murakoshi, Y. Wada, J. Kim, N. Nakashima, T. Yamanaka, S. Yanagida, J. Phys. Chem. 100, 10201 (1996)CrossRefGoogle Scholar
- 109.Y. Hasegawa, K. Murakoshi, Y. Wada, J. Kim, N. Nakashima, T. Yamanaka, S. Yanagida, Chem. Phys. Lett. 260, 173 (1996)CrossRefGoogle Scholar
- 110.G. Stain, E. Würzberg, J. Chem. Phys. 62, 208 (1975)CrossRefGoogle Scholar