Generative Cells



Sexual reproduction is one of the most important events in the life history of eukaryotic organisms. Throughout the process of algal and plant evolution, the mode of mating has changed from isogamy to unisogamy, and, finally, to oogamy. In parallel, the mating process has become progressively less dependent on the presence of external water. In algae, bryophytes, and pteridophytes, male gametes are flagellated sperms which move to eggs by swimming in external water. In some gymnosperms, male gametes are still sperms with flagella, but they do not reach eggs by swimming through external water; instead, pollen grains (male gametophytes encapsulated within a pollen wall) travel through dry air to the ovules; thus sperms must swim only a short distance across the fluid-filled archegonial chamber in the ovules. In the evolution of gymnosperms, male gametes lost flagella and motility and came to be delivered by pollen tubes, making it possible for male gametes to reach egg cells without being exposed to the extracellular environment. Gametophyte generation also evolved to become more simple. In bryophytes, gametophyte generation is a dominant phase. Pteridophytes keep gametophytes (prothallia) small while sporophytes become larger and more complex. In gymnosperms, gametophytes become extensively smaller. In angiosperms, the male gametophyte (pollen) is composed of only three cells, and the female gametophyte (embryo sac) is typically seven cells. Among the ten gametophytic cells, however, as many as 4 cells participate in double fertilization, which is specific to angiosperms. In this chapter, 14 selected figures illustrate various aspects of sexual reproduction in algae and plants.


Pollen Tube Sperm Cell Female Gametophyte Male Gamete Male Gametophyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chapter References

  1. 1.
    Kagami Y, Mogi Y, Arai T, Yamamoto M, Kuwano K, Kawano S (2008) Sexuality and uniparental inheritance of chloroplast DNA in the isogamous green alga Ulva compressa (Ulvophyceae). J Phycol 44:691–702. doi: 10.1111/j.1529-8817.2008.00527.x CrossRefGoogle Scholar
  2. 2.
    Mogi Y, Kagami Y, Kuwano K, Miyamura S, Nagumo T, Kawano S (2008) Asymmetry of eyespot and mating structure positions in Ulva compressa (Ulvales, Chlorophyta) revealed by a new FE-SEM method. J Phycol 44:1290–1299. doi: 10.1111/j.1529-8817.2008.00573.x CrossRefGoogle Scholar
  3. 3.
    Nishida H, Pigg KB, Rigby JF (2003) Swimming sperm in an extinct Gondwanan plant. Nature 422:396–397. doi: 10.1038/422396a PubMedCrossRefGoogle Scholar
  4. 4.
    Nishida H, Pigg KB, Kudo K, Rigby JF (2004) Zooidogamy in the late Permian genus Glossopteris. J Plant Res 117:323–328. doi: 10.1007/s10265-004-0164-4 PubMedCrossRefGoogle Scholar
  5. 5.
    Nishida H, Pigg KB, Kudo K, Rigby JF (2007) New evidence of reproductive organs of Glossopteris based on permineralized fossils from Queensland, Australia. I. Ovulate organ Homevaleia gen nov. J Plant Res 120:539–549. doi: 10.1007/s10265-007-0093-0 PubMedCrossRefGoogle Scholar
  6. 6.
    Hori T, Miyamura S (1997) Contribution to the knowledge of fertilization of gymnosperms with flagellated sperm cells: Ginkgo biloba and Cycas revoluta. In: Hori T, Ridge RW, Tulecke W, Tredici DP, Tremouillaux-Guiller J, Tobe H (eds) Ginkgo biloba a global treasure: from biology to medicine. Springer, Tokyo, pp 67–84. doi: 10.1007/978-4-431-68416-9_6 CrossRefGoogle Scholar
  7. 7.
    Tanaka I (2011) Molecular morphological studies on pollen development using protoplasts. Plant Morphol 23:53–59CrossRefGoogle Scholar
  8. 8.
    Tanaka I (1993) Development of male gametes in flowering plants. J Plant Res 106:55–63. doi: 10.1007/BF02344373 CrossRefGoogle Scholar
  9. 9.
    Ueda K, Tanaka I (1995) Male gametic nucleus-specific H2B and H3 histones, designated gH2B and gH3, in Lilium longiflorum. Planta 197:289–295. doi: 10.1007/BF00202649 CrossRefGoogle Scholar
  10. 10.
    Fujie M, Kuroiwa H, Kawano S, Mutoh S, Kuroiwa T (1994) Behavior of organelles and their nucleoids in the shoot apical meristem during leaf development in Arabidopsis thaliana L. Planta 194:395–405. doi: 10.1007/BF00197541 CrossRefGoogle Scholar
  11. 11.
    Nagata N, Saito C, Sakai A, Kuroiwa H, Kuroiwa T (1999) The selective increase or decrease of organellar DNA in generative cells just after pollen mitosis one controls cytoplasmic inheritance. Planta 209:53–65. doi: 10.1007/s004250050606 PubMedCrossRefGoogle Scholar
  12. 12.
    Fauré S, Noyer JL, Carreel F, Horry JP, Bakry F, Lanaud C (1994) Maternal inheritance of chloroplast genome and paternal inheritance of mitochondrial genome in bananas (Musa acuminata). Curr Genet 25:265–269. doi: 10.1007/BF00357172 PubMedCrossRefGoogle Scholar
  13. 13.
    Russel SD (1980) Participation of male cytoplasm during gamete fusion in an angiosperm, Plumbago zeylanica. Science 210:200–201. doi: 10.1126/science.210.4466.200 CrossRefGoogle Scholar
  14. 14.
    Russel SD (1985) Preferential fertilization in Plumbago zeylanica: ultra-structural evidence for gamete-level recognition in an angiosperm. Proc Natl Acad Sci U S A 82:6129–6132CrossRefGoogle Scholar
  15. 15.
    Saito C, Nagata N, Sakai A, Kuroiwa H, Kuroiwa T (2001) Behavior of plastid nucleoids during male gametogenesis in Plumbago auriculata. Protoplasma 216:143–154. doi: 10.1007/BF02673866 PubMedCrossRefGoogle Scholar
  16. 16.
    Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, Yui R, Kasahara RD, Hamamura Y, Mizukami A, Susaki D, Kawano N, Sakakibara T, Namiki S, Itoh K, Otsuka K, Matsuzaki M, Nozaki H, Kuroiwa T, Nakano A, Kanaoka MM, Dresselhaus T, Sasaki N, Higashiyama T (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–361. doi: 10.1038/nature07882 PubMedCrossRefGoogle Scholar
  17. 17.
    Kasahara RD, Portereiko MF, Sandaklie-Nikolova L, Rabiger DS, Drews GN (2005) MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. Plant Cell 17:2981–2992. doi: 10.1105/tpc.105.034603 PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Higashiyama T, Kuroiwa H, Kawano S, Kuroiwa T (1998) Guidance in vitro of the pollen tube to the naked embryo sac of Torenia fournieri. Plant Cell 10:2019–2031. doi: 10.1105/tpc.10.12.2019 PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima S, Kuroiwa H, Kuroiwa T (2001) Pollen tube attraction by the synergid cell. Science 293:1480–1483. doi: 10.1126/science.1062429 PubMedCrossRefGoogle Scholar
  20. 20.
    Higashiyama T, Hamamura Y (2008) Gametophytic pollen tube guidance. Sex Plant Reprod 21:17–26. doi: 10.1007/s00497-007-0064-6 CrossRefGoogle Scholar
  21. 21.
    Takeuchi H, Higashiyama T (2011) Attraction of tip-growing pollen tubes by the female gametophyte. Curr Opin Plant Biol 14:614–621. doi: 10.1016/j.pbi.2011.07.010 PubMedCrossRefGoogle Scholar
  22. 22.
    Hamamura Y, Nagahara S, Higashiyama T (2012) Double fertilization on the move. Curr Opin Plant Biol 15:70–77. doi: 10.1016/j.pbi.2011.11.001 PubMedCrossRefGoogle Scholar
  23. 23.
    Kanaoka MM (2011) Technical note: isolation of intact gametophytic protoplasts from Torenia and Lindernia species. Cytologia 76:109. doi: 10.1508/cytologia.76.109 Google Scholar
  24. 24.
    Kawano N, Susaki D, Sasaki N, Higashiyama T, Kanaoka MM (2011) Isolation of gametophytic cells and identification of their cell-specific markers in Torenia fournieri, T. concolor and Lindernia micrantha. Cytologia 76:177–184. doi: 10.1508/cytologia.76.177 CrossRefGoogle Scholar
  25. 25.
    Kuroiwa H, Kuroiwa T (1992) Giant mitochondria in the mature egg cell of Pelargonium zonale. Protoplasma 168:184–188. doi: 10.1007/BF01666264 CrossRefGoogle Scholar
  26. 26.
    Kuroiwa H, Ohta T, Kuroiwa T (1996) Studies on the development and three-dimensional reconstruction of giant mitochondria and their nuclei in egg cells of Pelargonium zonale Ait. Protoplasma 192:235–244. doi: 10.1007/BF01273895 CrossRefGoogle Scholar
  27. 27.
    Kuroiwa H (1989) Ultrastructural examination of embryogenesis in Crepis capillaris (L.) Wallr: 1. The synergid before and after pollination. Bot Mag (Tokyo) 102:9–24. doi: 10.1007/BF02488109 CrossRefGoogle Scholar
  28. 28.
    Kuroiwa H, Nishimura Y, Higashiyama T, Kuroiwa T (2002) Pelargonium embryogenesis: cytological investigations of organelles in early embryogenesis from the egg to the two-celled embryo. Sex Plant Reprod 15:1–12. doi: 10.1007/s00497-002-0139-3 CrossRefGoogle Scholar
  29. 29.
    Yamauchi D, Tamaoki D, Hayami M, Uesugi K, Takeuchi A, Suzuki Y, Karahara I, Mineyuki Y (2012) Extracting tissue and cell outlines of Arabidopsis seeds using refraction contrast X-Ray CT at the SPring-8 facility. AIP Conf Proc 1466:237–242. doi: 10.1063/1.4742298 CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Course of Biological Sciences, Faculty of ScienceNara Women’s UniversityNaraJapan

Personalised recommendations