Skip to main content

Chloroplasts

  • Chapter
  • First Online:
Atlas of Plant Cell Structure
  • 2133 Accesses

Abstract

Chloroplasts are plastid, chlorophyll-containing organelles found in plant cells and eukaryotic algae that conduct photosynthesis. Chloroplasts and other plastids, such as etioplasts, leucoplasts, amyloplasts, and chromoplasts, develop either by division of an existing plastid or from proplastids. It is generally accepted that plastids are derived from a single endosymbiotic event in the ancestor of glaucophytes, red, and green algae (which was the ancestor of land plants). Understanding the origin of plastids enhances our understanding of the basis of photosynthesis in green plants, our primary food source.

The first three articles in this chapter review chloroplast division machinery in the unicellular red alga Cyanidioschyzon merolae and the glaucocystophyte Cyanophora paradoxa. Pyrenoids are sub-cellular compartments of chloroplasts in many algae, and their main function is to act as centers of carbon dioxide fixation in which RuBisCO is accumulated. Haematococcus pluvialis is a freshwater green algae which is well known for its accumulation of carotenoids (e.g., astaxanthin) during encystment. Cells of many lower land plants (i.e., archegoniate plants) contain only a single chloroplast. Riverweed, a unique aquatic angiosperm, has two different sizes of chloroplasts in each epidermal cell. The distribution of chloroplasts and mitochondria in mesophyll cells, prolamellar bodies of the etioplast in etiolated cotyledon, and chloroplast division machinery are highlighted and illustrated in several land plants. Finally, the active digestion of paternal chloroplast DNA in a young zygote of Chlamydomonas reinhardtii are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Chapter References

  1. Miyagishima S, Kabeya Y (2010) Chloroplast division: squeezing the photosynthetic captive. Curr Opin Microbiol 13:738–746

    Article  PubMed  CAS  Google Scholar 

  2. Mita T, Kanbe T, Tanaka K, Kuroiwa T (1986) A ring structure around the dividing plane of the Cyanidium caldarium chloroplast. Protoplasma 130:211–213

    Article  Google Scholar 

  3. Miyagishima S, Nishida K, Mori T, Matsuzaki M, Higashiyama T, Kuroiwa H, Kuroiwa T (2003) A plant-specific dynamin-related protein forms a ring at the chloroplast division site. Plant Cell 15:655–665

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Miyagishima S, Itoh R, Aita S, Kuroiwa H, Kuroiwa T (1999) Isolation of dividing chloroplasts with intact plastid-dividing rings from a synchronous culture of the unicellular red alga Cyanidioschyzon merolae. Planta 209:371–375

    Article  PubMed  CAS  Google Scholar 

  5. Yoshida Y, Kuroiwa H, Misumi O, Yoshida M, Ohnuma M, Fujiwara T, Yagisawa F, Hirooka S, Imoto Y, Matsushita K, Kawano S, Kuroiwa T (2010) Chloroplasts divide by contraction of a bundle of nanofilaments consisting of polyglucan. Science 329:949–953

    Article  PubMed  CAS  Google Scholar 

  6. Yoshida Y, Fujiwara T, Imoto Y, Yoshida M, Ohnuma M, Hirooka S, Misumi O, Kuroiwa H, Kato S, Matsunaga S, Kuroiwa T (2013) The kinesin-like protein TOP promotes Aurora localization and induces mitochondrial, chloroplast and nuclear division. J Cell Sci 126:2392–2400

    Article  PubMed  CAS  Google Scholar 

  7. Yoshida Y, Kuroiwa H, Misumi O, Nishida K, Yagisawa F, Fujiwara T, Nanamiya H, Kawamura F, Kuroiwa T (2006) Isolated chloroplast division machinery can actively constrict after stretching. Science 313:1435–1438

    Article  PubMed  CAS  Google Scholar 

  8. Iino M, Hashimoto H (2003) Intermediate features of cyanelle division of Cyanophora paradoxa (Glaucocystophyta) between cyanobacterial and plastid division. J Phycol 39:561–569

    Article  Google Scholar 

  9. Sato M, Mogi Y, Nishikawa T, Miyamura S, Nagumo T, Kawano S (2009) The dynamic surface of dividing cyanelles and ultrastructure of the region directly below the surface in Cyanophora paradoxa. Planta 229:781–791

    Article  PubMed  CAS  Google Scholar 

  10. Sato M, Nishikawa T, Kajitani H, Kawano S (2007) Conserved relationship between FtsZ and peptidoglycan in the cyanelles of Cyanophora paradoxa similar to that in bacterial cell division. Planta 227:177–187

    Article  PubMed  CAS  Google Scholar 

  11. Osafune T, Yokota A, Sumida S, Hase E (1990) Immunogold localization of ribulose-1,5-bisphosphate carboxylase/oxygenase with reference to pyrenoid morphology in chloroplasts of synchronized Euglena gracilis cells. Plant Physiol 92:802–808

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Schwartzbach SD, Osafune T (eds) (2010) Immunoelectron microscopy: methods and protocols. Hamana Press, New York

    Google Scholar 

  13. Osafune T (2005) Immunogold localization of photosynthetic proteins in Euglena. Plant Morphol 17:1–13

    Article  Google Scholar 

  14. Wayama M, Ota S, Matsuura H, Nango N, Hirata A, Kawano S (2013) Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis. PLoS One 8:e53618

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Shimamura M, Itouga M, Tsubota H (2012) Evolution of apolar sporocytes in marchantialean liverworts: implications from molecular phylogeny. J Plant Res 125:197–206

    Article  PubMed  Google Scholar 

  16. Shimamura M, Mineyuki Y, Deguchi H (2003) A review of the occurrence of monoplastidic meiosis in liverworts. J Hattori Bot Lab 94:179–186

    Google Scholar 

  17. Shimamura M, Brown RC, Lemmon BE, Akashi T, Mizuno K, Nishihara N, Tomizawa KI, Yoshimoto K, Deguchi H, Hosoya H, Horio T, Mineyuki Y (2004) γ-Tubulin in basal land plants: characterization, localization, and implication in the evolution of acentriolar microtubule organizing centers. Plant Cell 16:45–59

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Fujinami R, Yoshihama I, Imaichi R (2011) Dimorphic chloroplasts in the epidermis of Podostemoideae, a subfamily of the unique aquatic angiosperm family Podostemaceae. J Plant Res 124:601–605

    Article  PubMed  CAS  Google Scholar 

  19. Kondo A, Kaikawa J, Funaguma T, Ueno O (2004) Clumping and dispersal of chloroplasts in succulent plants. Planta 219:500–506

    Article  PubMed  CAS  Google Scholar 

  20. Kondo A, Shibata K, Sakurai T, Tawata M, Funaguma T (2006) Intracellular positioning of nucleus and mitochondria with clumping of chloroplasts in the succulent CAM plant Kalanchoë blossfeldiana: an investigation using fluorescence microscopy. Plant Morphol 18:69–73

    Article  Google Scholar 

  21. Gunning BES, Steer MW (1996) Plastids. In: Gunning BES, Steer MW (eds) Plant cell biology, structure and function. Jones and Bartlett publishers, Canada, pp 20–29

    Google Scholar 

  22. Hayashi Y, Hayashi M, Hayashi H, Hara-Nishimura I, Nishimura M (2001) Direct interaction between glyoxisomes and lipid bodies in cotyledons of the Arabidopsis thaliana ped1 mutant. Protoplasma 218:83–94

    Article  PubMed  CAS  Google Scholar 

  23. Kuroiwa H, Mori T, Takahara M, Miyagishima S, Kuroiwa T (2002) Chloroplast division machinery as revealed by immunofluorescence and electron microscopy. Planta 215:185–190

    Article  PubMed  CAS  Google Scholar 

  24. Mori T, Kuroiwa H, Takahara M, Miyagishima S, Kuroiwa T (2001) Visualization of an FtsZ ring in chloroplasts of Lilium longiflorum leaves. Plant Cell Physiol 42:555–559

    Article  PubMed  CAS  Google Scholar 

  25. Nishimura Y (2010) Uniparental inheritance of cpDNA and the genetic control of sexual differentiation in Chlamydomonas reinhardtii. J Plant Res 123:149–162

    Article  PubMed  CAS  Google Scholar 

  26. Nishimura Y, Misumi O, Matsunaga S, Higashiyama T, Yokota A, Kuroiwa T (1999) The active digestion of uniparental chloroplast DNA in a single zygote of Chlamydomonas reinhardtii is revealed by using the optical tweezer. Proc Natl Acad Sci USA 96:12577–12582

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Nishimura Y, Shikanai Y, Nakamura S, Kawai-Yamada M, Uchimiya H (2012) The Gsp1 triggers sexual developmental program including inheritance of cpDNA and mtDNA in Chlamydomonas reinhardtii. Plant Cell 24:2401–2414

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeyuki Kawano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Kawano, S. (2014). Chloroplasts. In: Noguchi, T., et al. Atlas of Plant Cell Structure. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54941-3_3

Download citation

Publish with us

Policies and ethics