Skip to main content

Molecular Biology of the Oral Cancer

  • Chapter
  • First Online:
Oral Cancer
  • 3530 Accesses

Abstract

Head and neck cancer, including oral squamous cell carcinoma (OSCC) and salivary gland cancer, is the sixth most common cancer in the world. OSCC has a high potential for local invasion and nodal metastasis, and the overall 5-year survival rate has not significantly improved during the past three decades. The need to understand the detailed molecular mechanisms of OSCC is urgent. Recent studies have clarified the molecular mechanisms of carcinogenesis, tumor progression, and metastasis of head and neck cancer. Although pathology is based on morphological findings, knowledge of molecular pathology is essential for the current pathology and oncology fields. In this chapter, we describe the molecular biological findings related to OSCC, such as the genetic events leading to OSCC development, human papillomavirus (HPV )-related OSCC, hallmarks of cancer, epithelial-mesenchymal transition (EMT ), and microRNA. We also discuss the novel molecular pathological findings obtained by our laboratory related to OSCC, salivary gland adenoid cystic carcinoma (ACC), and mucoepidermoid carcinoma (MEC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Argiris A, Karamouzis MV, Raben D, Ferris RL (2008) Head and neck cancer. Lancet 371(9625):1695–1709. doi:10.1016/s0140-6736(08)60728-x

    CAS  PubMed  Google Scholar 

  2. Paterson IC, Eveson JW, Prime SS (1996) Molecular changes in oral cancer may reflect aetiology and ethnic origin. Eur J Cancer Pt B Oral Oncol 32B(3):150–153

    CAS  Google Scholar 

  3. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi:10.3322/caac.20107

    PubMed  Google Scholar 

  4. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62(1):10–29. doi:10.3322/caac.20138

    PubMed  Google Scholar 

  5. Tanaka S, Sobue T (2005) Comparison of oral and pharyngeal cancer mortality in five countries: France, Italy, Japan, UK and USA from the WHO Mortality Database (1960–2000). Jpn J Clin Oncol 35(8):488–491. doi:10.1093/jjco/hyi133

    CAS  PubMed  Google Scholar 

  6. Alvi A, Johnson JT (1997) Development of distant metastasis after treatment of advanced-stage head and neck cancer. Head Neck 19(6):500–505

    CAS  PubMed  Google Scholar 

  7. Marsh D, Suchak K, Moutasim KA, Vallath S, Hopper C, Jerjes W, Upile T, Kalavrezos N, Violette SM, Weinreb PH, Chester KA, Chana JS, Marshall JF, Hart IR, Hackshaw AK, Piper K, Thomas GJ (2011) Stromal features are predictive of disease mortality in oral cancer patients. J Pathol 223(4):470–481. doi:10.1002/path.2830

    CAS  PubMed  Google Scholar 

  8. Izumo T, Kirita T, Ariji E, Ozeki S, Okada N, Okabe S, Okazaki Y, Omura K, Kusama M, Sato T, Shinohara M, Shimozato K, Shintani S, Tanaka Y, Nakayama E, Hayashi T, Miyazaki A, Yagishita H, Yamane M, Working Group 1 on the Guidelines for C, Pathological Studies of Oral Cancer SCJSfOT (2012) General rules for clinical and pathological studies on oral cancer: a synopsis. Jpn J Clin Oncol 42(11):1099–1109. doi:10.1093/jjco/hys141

    PubMed  Google Scholar 

  9. Califano J, van der Riet P, Westra W, Nawroz H, Clayman G, Piantadosi S, Corio R, Lee D, Greenberg B, Koch W, Sidransky D (1996) Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res 56(11):2488–2492

    CAS  PubMed  Google Scholar 

  10. Lippman SM, Sudbo J, Hong WK (2005) Oral cancer prevention and the evolution of molecular-targeted drug development. J Clin Oncol 23(2):346–356. doi:10.1200/jco.2005.09.128

    PubMed  Google Scholar 

  11. Perez-Ordonez B, Beauchemin M, Jordan RC (2006) Molecular biology of squamous cell carcinoma of the head and neck. J Clin Pathol 59(5):445–453. doi:10.1136/jcp.2003.007641

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Choi S, Myers JN (2008) Molecular pathogenesis of oral squamous cell carcinoma: implications for therapy. J Dental Res 87(1):14–32

    CAS  Google Scholar 

  13. Reed AL, Califano J, Cairns P, Westra WH, Jones RM, Koch W, Ahrendt S, Eby Y, Sewell D, Nawroz H, Bartek J, Sidransky D (1996) High frequency of p16 (CDKN2/MTS-1/INK4A) inactivation in head and neck squamous cell carcinoma. Cancer Res 56(16):3630–3633

    CAS  PubMed  Google Scholar 

  14. Garnis C, Baldwin C, Zhang L, Rosin MP, Lam WL (2003) Use of complete coverage array comparative genomic hybridization to define copy number alterations on chromosome 3p in oral squamous cell carcinomas. Cancer Res 63(24):8582–8585

    CAS  PubMed  Google Scholar 

  15. Shahnavaz SA, Regezi JA, Bradley G, Dube ID, Jordan RC (2000) p53 gene mutations in sequential oral epithelial dysplasias and squamous cell carcinomas. J Pathol 190(4):417–422. doi:10.1002/(sici)1096-9896(200003)190:4<417::aid-path544>3.0.co;2-g

    CAS  PubMed  Google Scholar 

  16. Boyle JO, Hakim J, Koch W, van der Riet P, Hruban RH, Roa RA, Correo R, Eby YJ, Ruppert JM, Sidransky D (1993) The incidence of p53 mutations increases with progression of head and neck cancer. Cancer Res 53(19):4477–4480

    CAS  PubMed  Google Scholar 

  17. Yu Z, Weinberger PM, Haffty BG, Sasaki C, Zerillo C, Joe J, Kowalski D, Dziura J, Camp RL, Rimm DL, Psyrri A (2005) Cyclin d1 is a valuable prognostic marker in oropharyngeal squamous cell carcinoma. Clin Cancer Res 11(3):1160–1166

    CAS  PubMed  Google Scholar 

  18. Sudbo J, Kildal W, Risberg B, Koppang HS, Danielsen HE, Reith A (2001) DNA content as a prognostic marker in patients with oral leukoplakia. New Engl J Med 344(17):1270–1278. doi:10.1056/nejm200104263441702

    CAS  PubMed  Google Scholar 

  19. Sudbo J, Lippman SM, Lee JJ, Mao L, Kildal W, Sudbo A, Sagen S, Bryne M, El-Naggar A, Risberg B, Evensen JF, Reith A (2004) The influence of resection and aneuploidy on mortality in oral leukoplakia. New Engl J Med 350(14):1405–1413. doi:10.1056/NEJMoa033374

    CAS  PubMed  Google Scholar 

  20. Kreimer AR, Clifford GM, Boyle P, Franceschi S (2005) Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomarkers Prev 14(2):467–475. doi:10.1158/1055-9965.epi-04-0551

    CAS  PubMed  Google Scholar 

  21. Adelstein DJ, Ridge JA, Gillison ML, Chaturvedi AK, D'Souza G, Gravitt PE, Westra W, Psyrri A, Kast WM, Koutsky LA, Giuliano A, Krosnick S, Trotti A, Schuller DE, Forastiere A, Ullmann CD (2009) Head and neck squamous cell cancer and the human papillomavirus: summary of a National Cancer Institute State of the science meeting, November 9–10, 2008, Washington, DC. Head Neck 31(11):1393–1422. doi:10.1002/hed.21269

    PubMed  Google Scholar 

  22. Syrjanen S, Lodi G, von Bultzingslowen I, Aliko A, Arduino P, Campisi G, Challacombe S, Ficarra G, Flaitz C, Zhou HM, Maeda H, Miller C, Jontell M (2011) Human papillomaviruses in oral carcinoma and oral potentially malignant disorders: a systematic review. Oral Dis 17(Suppl 1):58–72. doi:10.1111/j.1601-0825.2011.01792.x

    PubMed  Google Scholar 

  23. Munger K, Howley PM (2002) Human papillomavirus immortalization and transformation functions. Virus Res 89(2):213–228

    CAS  PubMed  Google Scholar 

  24. Li W, Thompson CH, Cossart YE, O'Brien CJ, McNeil EB, Scolyer RA, Rose BR (2004) The expression of key cell cycle markers and presence of human papillomavirus in squamous cell carcinoma of the tonsil. Head Neck 26(1):1–9. doi:10.1002/hed.10335

    PubMed  Google Scholar 

  25. Leemans CR, Braakhuis BJ, Brakenhoff RH (2011) The molecular biology of head and neck cancer. Nat Rev Cancer 11(1):9–22. doi:10.1038/nrc2982

    CAS  PubMed  Google Scholar 

  26. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    CAS  PubMed  Google Scholar 

  27. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    CAS  PubMed  Google Scholar 

  28. Pitiyage G, Tilakaratne WM, Tavassoli M, Warnakulasuriya S (2009) Molecular markers in oral epithelial dysplasia: review. J Oral Pathol Med 38(10):737–752. doi:10.1111/j.1600-0714.2009.00804.x

    CAS  PubMed  Google Scholar 

  29. Reuter CW, Morgan MA, Eckardt A (2007) Targeting EGF-receptor-signalling in squamous cell carcinomas of the head and neck. Br J Cancer 96(3):408–416. doi:10.1038/sj.bjc.6603566

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Cavalot A, Martone T, Roggero N, Brondino G, Pagano M, Cortesina G (2007) Prognostic impact of HER-2/neu expression on squamous head and neck carcinomas. Head Neck 29(7):655–664. doi:10.1002/hed.20574

    PubMed  Google Scholar 

  31. Cox AD, Der CJ (2003) The dark side of Ras: regulation of apoptosis. Oncogene 22(56):8999–9006. doi:10.1038/sj.onc.1207111

    CAS  PubMed  Google Scholar 

  32. Grimminger CM, Danenberg PV (2011) Update of prognostic and predictive biomarkers in oropharyngeal squamous cell carcinoma: a review. Eur Arch Oto-Rhino-Laryngol 268(1):5–16. doi:10.1007/s00405-010-1369-x

    Google Scholar 

  33. Das N, Majumder J, DasGupta UB (2000) Ras gene mutations in oral cancer in eastern India. Oral Oncol 36(1):76–80

    CAS  PubMed  Google Scholar 

  34. Murugan AK, Hong NT, Cuc TT, Hung NC, Munirajan AK, Ikeda MA, Tsuchida N (2009) Detection of two novel mutations and relatively high incidence of H-RAS mutations in Vietnamese oral cancer. Oral Oncol 45(10):e161–166. doi:10.1016/j.oraloncology.2009.05.638

    CAS  PubMed  Google Scholar 

  35. Weber A, Langhanki L, Sommerer F, Markwarth A, Wittekind C, Tannapfel A (2003) Mutations of the BRAF gene in squamous cell carcinoma of the head and neck. Oncogene 22(30):4757–4759. doi:10.1038/sj.onc.1206705

    CAS  PubMed  Google Scholar 

  36. Shojaei F, Lee JH, Simmons BH, Wong A, Esparza CO, Plumlee PA, Feng J, Stewart AE, Hu-Lowe DD, Christensen JG (2010) HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Res 70(24):10090–10100. doi:10.1158/0008-5472.can-10-0489

    CAS  PubMed  Google Scholar 

  37. Murai M, Shen X, Huang L, Carpenter WM, Lin CS, Silverman S, Regezi J, Kramer RH (2004) Overexpression of c-met in oral SCC promotes hepatocyte growth factor-induced disruption of cadherin junctions and invasion. Int J Oncol 25(4):831–840

    CAS  PubMed  Google Scholar 

  38. Chen YS, Wang JT, Chang YF, Liu BY, Wang YP, Sun A, Chiang CP (2004) Expression of hepatocyte growth factor and c-met protein is significantly associated with the progression of oral squamous cell carcinoma in Taiwan. J Oral Pathol Med 33(4):209–217. doi:10.1111/j.0904-2512.2004.00118.x

    CAS  PubMed  Google Scholar 

  39. Lim YC, Han JH, Kang HJ, Kim YS, Lee BH, Choi EC, Kim CH (2012) Overexpression of c-Met promotes invasion and metastasis of small oral tongue carcinoma. Oral Oncol 48(11):1114–1119. doi:10.1016/j.oraloncology.2012.05.013

    CAS  PubMed  Google Scholar 

  40. Sun XF, Zhang H (2007) NFKB and NFKBI polymorphisms in relation to susceptibility of tumour and other diseases. Histol Histopathol 22(12):1387–1398

    CAS  PubMed  Google Scholar 

  41. Yan M, Xu Q, Zhang P, Zhou XJ, Zhang ZY, Chen WT (2010) Correlation of NF-kappaB signal pathway with tumor metastasis of human head and neck squamous cell carcinoma. BMC Cancer 10:437. doi:10.1186/1471-2407-10-437

    PubMed Central  PubMed  Google Scholar 

  42. Furuta H, Osawa K, Shin M, Ishikawa A, Matsuo K, Khan M, Aoki K, Ohya K, Okamoto M, Tominaga K, Takahashi T, Nakanishi O, Jimi E (2012) Selective inhibition of NF-kappaB suppresses bone invasion by oral squamous cell carcinoma in vivo. Int J Cancer 131(5):E625–635. doi:10.1002/ijc.27435

    CAS  PubMed  Google Scholar 

  43. Watari K, Nakamura M, Fukunaga Y, Furuno A, Shibata T, Kawahara A, Hosoi F, Kuwano T, Kuwano M, Ono M (2012) The antitumor effect of a novel angiogenesis inhibitor (an octahydronaphthalene derivative) targeting both VEGF receptor and NF-kappaB pathway. Int J Cancer 131(2):310–321. doi:10.1002/ijc.26356

    CAS  PubMed  Google Scholar 

  44. Tamatani T, Azuma M, Ashida Y, Motegi K, Takashima R, Harada K, Kawaguchi S, Sato M (2004) Enhanced radiosensitization and chemosensitization in NF-kappaB-suppressed human oral cancer cells via the inhibition of gamma-irradiation- and 5-FU-induced production of IL-6 and IL-8. Int J Cancer 108(6):912–921. doi:10.1002/ijc.11640

    CAS  PubMed  Google Scholar 

  45. Bussink J, van der Kogel AJ, Kaanders JH (2008) Activation of the PI3-K/AKT pathway and implications for radioresistance mechanisms in head and neck cancer. Lancet Oncol 9(3):288–296. doi:10.1016/s1470-2045(08)70073-1

    CAS  PubMed  Google Scholar 

  46. Murugan AK, Hong NT, Fukui Y, Munirajan AK, Tsuchida N (2008) Oncogenic mutations of the PIK3CA gene in head and neck squamous cell carcinomas. Int J Oncol 32(1):101–111

    CAS  PubMed  Google Scholar 

  47. Miyamoto R, Uzawa N, Nagaoka S, Hirata Y, Amagasa T (2003) Prognostic significance of cyclin D1 amplification and overexpression in oral squamous cell carcinomas. Oral Oncol 39(6):610–618

    CAS  PubMed  Google Scholar 

  48. Wang L, Liu T, Nishioka M, Aguirre RL, Win SS, Okada N (2006) Activation of ERK1/2 and cyclin D1 expression in oral tongue squamous cell carcinomas: relationship between clinicopathological appearances and cell proliferation. Oral Oncol 42(6):625–631. doi:10.1016/j.oraloncology.2005.11.002

    PubMed  Google Scholar 

  49. Zhou X, Zhang Z, Yang X, Chen W, Zhang P (2009) Inhibition of cyclin D1 expression by cyclin D1 shRNAs in human oral squamous cell carcinoma cells is associated with increased cisplatin chemosensitivity. Int J Cancer 124(2):483–489. doi:10.1002/ijc.23964

    CAS  PubMed  Google Scholar 

  50. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809. doi:10.1038/nrc2734

    CAS  PubMed  Google Scholar 

  51. Adachi M, Cui C, Dodge CT, Bhayani MK, Lai SY (2012) Targeting STAT3 inhibits growth and enhances radiosensitivity in head and neck squamous cell carcinoma. Oral Oncol 48(12):1220–1226. doi:10.1016/j.oraloncology.2012.06.006

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Macha MA, Matta A, Kaur J, Chauhan SS, Thakar A, Shukla NK, Gupta SD, Ralhan R (2011) Prognostic significance of nuclear pSTAT3 in oral cancer. Head Neck 33(4):482–489. doi:10.1002/hed.21468

    PubMed  Google Scholar 

  53. Klosek SK, Nakashiro K, Hara S, Li C, Shintani S, Hamakawa H (2004) Constitutive activation of Stat3 correlates with increased expression of the c-Met/HGF receptor in oral squamous cell carcinoma. Oncol Rep 12(2):293–296

    CAS  PubMed  Google Scholar 

  54. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310. doi:10.1038/35042675

    CAS  PubMed  Google Scholar 

  55. Shiraishi K, Kato S, Han SY, Liu W, Otsuka K, Sakayori M, Ishida T, Takeda M, Kanamaru R, Ohuchi N, Ishioka C (2004) Isolation of temperature-sensitive p53 mutations from a comprehensive missense mutation library. J Biol Chem 279(1):348–355. doi:10.1074/jbc.M310815200

    CAS  PubMed  Google Scholar 

  56. Ries JC, Schreiner D, Steininger H, Girod SC (1998) p53 mutation and detection of p53 protein expression in oral leukoplakia and oral squamous cell carcinoma. Anticancer Res 18(3B):2031–2036

    CAS  PubMed  Google Scholar 

  57. Nagpal JK, Patnaik S, Das BR (2002) Prevalence of high-risk human papilloma virus types and its association with P53 codon 72 polymorphism in tobacco addicted oral squamous cell carcinoma (OSCC) patients of Eastern India. Int J Cancer 97(5):649–653

    CAS  PubMed  Google Scholar 

  58. Sun P, Nallar SC, Raha A, Kalakonda S, Velalar CN, Reddy SP, Kalvakolanu DV (2010) GRIM-19 and p16(INK4a) synergistically regulate cell cycle progression and E2F1-responsive gene expression. J Biol Chem 285(36):27545–27552. doi:10.1074/jbc.M110.105767

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Schlosshauer PW, Deligdisch L, Penault-Llorca F, Fatemi D, Qiao R, Yao S, Pearl M, Yang Z, Sheng T, Dong J (2011) Loss of p16INK4A expression in low-grade ovarian serous carcinomas. Int J Gynecol Pathol 30(1):22–29. doi:10.1097/PGP.0b013e3181ed89b3

    PubMed  Google Scholar 

  60. Viswanathan M, Tsuchida N, Shanmugam G (2003) Promoter hypermethylation profile of tumor-associated genes p16, p15, hMLH1, MGMT and E-cadherin in oral squamous cell carcinoma. Int J Cancer 105(1):41–46. doi:10.1002/ijc.11028

    CAS  PubMed  Google Scholar 

  61. Ruesga MT, Acha-Sagredo A, Rodriguez MJ, Aguirregaviria JI, Videgain J, Rodriguez C, de Pancorbo Mde L, Aguirre JM (2007) p16(INK4a) promoter hypermethylation in oral scrapings of oral squamous cell carcinoma risk patients. Cancer Lett 250(1):140–145. doi:10.1016/j.canlet.2006.10.001

    CAS  PubMed  Google Scholar 

  62. Su PF, Huang WL, Wu HT, Wu CH, Liu TY, Kao SY (2010) p16(INK4A) promoter hypermethylation is associated with invasiveness and prognosis of oral squamous cell carcinoma in an age-dependent manner. Oral Oncol 46(10):734–739. doi:10.1016/j.oraloncology.2010.07.002

    CAS  PubMed  Google Scholar 

  63. Mendenhall WM, Logan HL (2009) Human papillomavirus and head and neck cancer. Am J Clin Oncol 32(5):535–539. doi:10.1097/COC.0b013e31818b8fee

    PubMed  Google Scholar 

  64. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75(4):817–825

    CAS  PubMed  Google Scholar 

  65. el-Deiry WS, Tokino T, Waldman T, Oliner JD, Velculescu VE, Burrell M, Hill DE, Healy E, Rees JL, Hamilton SR et al (1995) Topological control of p21WAF1/CIP1 expression in normal and neoplastic tissues. Cancer Res 55(13):2910–2919

    CAS  PubMed  Google Scholar 

  66. Agarwal S, Mathur M, Shukla NK, Ralhan R (1998) Expression of cyclin dependent kinase inhibitor p21waf1/cip1 in premalignant and malignant oral lesions: relationship with p53 status. Oral Oncol 34(5):353–360

    CAS  PubMed  Google Scholar 

  67. Kudo Y, Takata T, Ogawa I, Sato S, Nikai H (1999) Expression of p53 and p21CIP1/WAF1 proteins in oral epithelial dysplasias and squamous cell carcinomas. Oncol Rep 6(3):539–545

    CAS  PubMed  Google Scholar 

  68. Nemes JA, Nemes Z, Marton IJ (2005) p21WAF1/CIP1 expression is a marker of poor prognosis in oral squamous cell carcinoma. J Oral Pathol Med 34(5):274–279. doi:10.1111/j.1600-0714.2005.00310.x

    CAS  PubMed  Google Scholar 

  69. Hafkamp HC, Mooren JJ, Claessen SM, Klingenberg B, Voogd AC, Bot FJ, Klussmann JP, Hopman AH, Manni JJ, Kremer B, Ramaekers FC, Speel EJ (2009) P21 Cip1/WAF1 expression is strongly associated with HPV-positive tonsillar carcinoma and a favorable prognosis. Modern Pathol 22(5):686–698. doi:10.1038/modpathol.2009.23

    CAS  Google Scholar 

  70. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275(5308):1943–1947

    CAS  PubMed  Google Scholar 

  71. Kim S, Domon-Dell C, Wang Q, Chung DH, Di Cristofano A, Pandolfi PP, Freund JN, Evers BM (2002) PTEN and TNF-alpha regulation of the intestinal-specific Cdx-2 homeobox gene through a PI3K, PKB/Akt, and NF-kappaB-dependent pathway. Gastroenterology 123(4):1163–1178

    CAS  PubMed  Google Scholar 

  72. Guldberg P, thor Straten P, Birck A, Ahrenkiel V, Kirkin AF, Zeuthen J (1997) Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res 57(17):3660–3663

    CAS  PubMed  Google Scholar 

  73. Yokomizo A, Tindall DJ, Drabkin H, Gemmill R, Franklin W, Yang P, Sugio K, Smith DI, Liu W (1998) PTEN/MMAC1 mutations identified in small cell, but not in non-small cell lung cancers. Oncogene 17(4):475–479. doi:10.1038/sj.onc.1201956

    CAS  PubMed  Google Scholar 

  74. Kinross KM, Brown DV, Kleinschmidt M, Jackson S, Christensen J, Cullinane C, Hicks RJ, Johnstone RW, McArthur GA (2011) In vivo activity of combined PI3K/mTOR and MEK inhibition in a Kras(G12D); Pten deletion mouse model of ovarian cancer. Mol Cancer Therap 10(8):1440–1449. doi:10.1158/1535-7163.mct-11-0240

    CAS  Google Scholar 

  75. Snietura M, Jaworska M, Mlynarczyk-Liszka J, Goraj-Zajac A, Piglowski W, Lange D, Wozniak G, Nowara E, Suwinski R (2012) PTEN as a prognostic and predictive marker in postoperative radiotherapy for squamous cell cancer of the head and neck. PLoS One 7(3):e33396. doi:10.1371/journal.pone.0033396

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Kurasawa Y, Shiiba M, Nakamura M, Fushimi K, Ishigami T, Bukawa H, Yokoe H, Uzawa K, Tanzawa H (2008) PTEN expression and methylation status in oral squamous cell carcinoma. Oncol Rep 19(6):1429–1434

    CAS  PubMed  Google Scholar 

  77. Kato K, Kawashiri S, Yoshizawa K, Kitahara H, Yamamoto E (2008) Apoptosis-associated markers and clinical outcome in human oral squamous cell carcinomas. J Oral Pathol Med 37(6):364–371. doi:10.1111/j.1600-0714.2008.00642.x

    PubMed  Google Scholar 

  78. Bauer JA, Trask DK, Kumar B, Los G, Castro J, Lee JS, Chen J, Wang S, Bradford CR, Carey TE (2005) Reversal of cisplatin resistance with a BH3 mimetic, (-)-gossypol, in head and neck cancer cells: role of wild-type p53 and Bcl-xL. Mol Cancer Therap 4(7):1096–1104. doi:10.1158/1535-7163.mct-05-0081

    CAS  Google Scholar 

  79. Staibano S, Mignogna MD, Lo Muzio L, Di Alberti L, Di Natale E, Lucariello A, Mezza E, Bucci E, DeRosa G (1998) Overexpression of cyclin-D1, bcl-2, and bax proteins, proliferating cell nuclear antigen (PCNA), and DNA-ploidy in squamous cell carcinoma of the oral cavity. Hum Pathol 29(11):1189–1194

    CAS  PubMed  Google Scholar 

  80. Xie X, Clausen OP, Boysen M (2003) Prognostic value of Bak expression in oral tongue squamous cell carcinomas. Oncol Rep 10(2):369–374

    CAS  PubMed  Google Scholar 

  81. Camisasca DR, Honorato J, Bernardo V, da Silva LE, da Fonseca EC, de Faria PA, Dias FL, Lourenco Sde Q (2009) Expression of Bcl-2 family proteins and associated clinicopathologic factors predict survival outcome in patients with oral squamous cell carcinoma. Oral Oncol 45(3):225–233. doi:10.1016/j.oraloncology.2008.05.021

    CAS  PubMed  Google Scholar 

  82. Sasabe E, Tatemoto Y, Li D, Yamamoto T, Osaki T (2005) Mechanism of HIF-1alpha-dependent suppression of hypoxia-induced apoptosis in squamous cell carcinoma cells. Cancer Sci 96(7):394–402. doi:10.1111/j.1349-7006.2005.00065.x

    CAS  PubMed  Google Scholar 

  83. McCaul JA, Gordon KE, Clark LJ, Parkinson EK (2002) Telomerase inhibition and the future management of head-and-neck cancer. Lancet Oncol 3(5):280–288

    CAS  PubMed  Google Scholar 

  84. Liu Z, Li Q, Li K, Chen L, Li W, Hou M, Liu T, Yang J, Lindvall C, Bjorkholm M, Jia J, Xu D (2012) Telomerase reverse transcriptase promotes epithelial-mesenchymal transition and stem cell-like traits in cancer cells. Oncogene. doi:10.1038/onc.2012.441

    Google Scholar 

  85. Chen HH, Yu CH, Wang JT, Liu BY, Wang YP, Sun A, Tsai TC, Chiang CP (2007) Expression of human telomerase reverse transcriptase (hTERT) protein is significantly associated with the progression, recurrence and prognosis of oral squamous cell carcinoma in Taiwan. Oral Oncol 43(2):122–129. doi:10.1016/j.oraloncology.2006.01.011

    CAS  PubMed  Google Scholar 

  86. McCaul JA, Gordon KE, Minty F, Fleming J, Parkinson EK (2008) Telomere dysfunction is related to the intrinsic radio-resistance of human oral cancer cells. Oral Oncol 44(3):261–269. doi:10.1016/j.oraloncology.2007.02.010

    CAS  PubMed  Google Scholar 

  87. Lohela M, Bry M, Tammela T, Alitalo K (2009) VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol 21(2):154–165. doi:10.1016/j.ceb.2008.12.012

    CAS  PubMed  Google Scholar 

  88. Sasahira T, Kirita T, Kurihara M, Yamamoto K, Bhawal UK, Bosserhoff AK, Kuniyasu H (2010) MIA-dependent angiogenesis and lymphangiogenesis are closely associated with progression, nodal metastasis and poor prognosis in tongue squamous cell carcinoma. Eur J Cancer 46(12):2285–2294. doi:10.1016/j.ejca.2010.04.027

    CAS  PubMed  Google Scholar 

  89. Li C, Shintani S, Terakado N, Klosek SK, Ishikawa T, Nakashiro K, Hamakawa H (2005) Microvessel density and expression of vascular endothelial growth factor, basic fibroblast growth factor, and platelet-derived endothelial growth factor in oral squamous cell carcinomas. Int J Oral Maxillofac Surg 34(5):559–565. doi:10.1016/j.ijom.2004.10.016

    CAS  PubMed  Google Scholar 

  90. Watanabe H, Iwase M, Ohashi M, Nagumo M (2002) Role of interleukin-8 secreted from human oral squamous cell carcinoma cell lines. Oral Oncol 38(7):670–679

    CAS  PubMed  Google Scholar 

  91. Fagiani E, Lorentz P, Kopfstein L, Christofori G (2011) Angiopoietin-1 and -2 exert antagonistic functions in tumor angiogenesis, yet both induce lymphangiogenesis. Cancer Res 71(17):5717–5727. doi:10.1158/0008-5472.can-10-4635

    CAS  PubMed  Google Scholar 

  92. Dagenais SL, Hartsough RL, Erickson RP, Witte MH, Butler MG, Glover TW (2004) Foxc2 is expressed in developing lymphatic vessels and other tissues associated with lymphedema-distichiasis syndrome. Gene Expr Patterns 4(6):611–619. doi:10.1016/j.modgep.2004.07.004

    CAS  PubMed  Google Scholar 

  93. Van den Eynden GG, Van der Auwera I, Van Laere SJ, Trinh XB, Colpaert CG, van Dam P, Dirix LY, Vermeulen PB, Van Marck EA (2007) Comparison of molecular determinants of angiogenesis and lymphangiogenesis in lymph node metastases and in primary tumours of patients with breast cancer. J Pathol 213(1):56–64. doi:10.1002/path.2211

    PubMed  Google Scholar 

  94. Kim WH, Lee SH, Jung MH, Seo JH, Kim J, Kim MA, Lee YM (2009) Neuropilin2 expressed in gastric cancer endothelial cells increases the proliferation and migration of endothelial cells in response to VEGF. Exp Cell Res 315(13):2154–2164. doi:10.1016/j.yexcr.2009.04.018

    CAS  PubMed  Google Scholar 

  95. Jayson GC, Hicklin DJ, Ellis LM (2012) Antiangiogenic therapy: evolving view based on clinical trial results. Nat Rev Clin Oncol 9(5):297–303. doi:10.1038/nrclinonc.2012.8

    CAS  PubMed  Google Scholar 

  96. Huber GF, Zullig L, Soltermann A, Roessle M, Graf N, Haerle SK, Studer G, Jochum W, Moch H, Stoeckli SJ (2011) Down regulation of E-Cadherin (ECAD): a predictor for occult metastatic disease in sentinel node biopsy of early squamous cell carcinomas of the oral cavity and oropharynx. BMC Cancer 11(217):211–218. doi:10.1186/1471-2407-11-217

    Google Scholar 

  97. Wang X, Zhang J, Fan M, Zhou Q, Deng H, Aisharif MJ, Chen X (2009) The expression of E-cadherin at the invasive tumor front of oral squamous cell carcinoma: immunohistochemical and RT-PCR analysis with clinicopathological correlation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107(4):547–554. doi:10.1016/j.tripleo.2008.11.021

    PubMed  Google Scholar 

  98. Diniz-Freitas M, Garcia-Caballero T, Antunez-Lopez J, Gandara-Rey JM, Garcia-Garcia A (2006) Reduced E-cadherin expression is an indicator of unfavourable prognosis in oral squamous cell carcinoma. Oral Oncol 42(2):190–200. doi:10.1016/j.oraloncology.2005.07.010

    CAS  PubMed  Google Scholar 

  99. Kudo Y, Kitajima S, Ogawa I, Hiraoka M, Sargolzaei S, Keikhaee MR, Sato S, Miyauchi M, Takata T (2004) Invasion and metastasis of oral cancer cells require methylation of E-cadherin and/or degradation of membranous beta-catenin. Clin Cancer Res 10(16):5455–5463. doi:10.1158/1078-0432.ccr-04-0372

    CAS  PubMed  Google Scholar 

  100. Larue L, Bellacosa A (2005) Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene 24(50):7443–7454. doi:10.1038/sj.onc.1209091

    CAS  PubMed  Google Scholar 

  101. Gao ZB, Duan YQ, Zhang L, Chen DW, Ding PT (2005) Expression of matrix metalloproteinase 2 and its tissue inhibitor in oral squamous cell carcinoma. Int J Mol Med 16(4):599–603

    CAS  PubMed  Google Scholar 

  102. de Vicente JC, Lequerica-Fernandez P, Santamaria J, Fresno MF (2007) Expression of MMP-7 and MT1-MMP in oral squamous cell carcinoma as predictive indicator for tumor invasion and prognosis. J Oral Pathol Med 36(7):415–424. doi:10.1111/j.1600-0714.2007.00546.x

    PubMed  Google Scholar 

  103. Liu SY, Liu YC, Huang WT, Huang GC, Su HJ, Lin MH (2007) Requirement of MMP-3 in anchorage-independent growth of oral squamous cell carcinomas. J Oral Pathol Med 36(7):430–435. doi:10.1111/j.1600-0714.2007.00524.x

    PubMed  Google Scholar 

  104. Yorioka CW, Coletta RD, Alves F, Nishimoto IN, Kowalski LP, Graner E (2002) Matrix metalloproteinase-2 and -9 activities correlate with the disease-free survival of oral squamous cell carcinoma patients. Int J Oncol 20(1):189–194

    CAS  PubMed  Google Scholar 

  105. Mashhadiabbas F, Mahjour F, Mahjour SB, Fereidooni F, Hosseini FS (2012) The immunohistochemical characterization of MMP-2, MMP-10, TIMP-1, TIMP-2, and podoplanin in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 114(2):240–250. doi:10.1016/j.oooo.2012.04.009

    PubMed  Google Scholar 

  106. Arora S, Kaur J, Sharma C, Mathur M, Bahadur S, Shukla NK, Deo SV, Ralhan R (2005) Stromelysin 3, Ets-1, and vascular endothelial growth factor expression in oral precancerous and cancerous lesions: correlation with microvessel density, progression, and prognosis. Clin Cancer Res 11(6):2272–2284. doi:10.1158/1078-0432.ccr-04-0572

    CAS  PubMed  Google Scholar 

  107. Perez-Sayans Garcia M, Suarez-Penaranda JM, Gayoso-Diz P, Barros-Angueira F, Gandara-Rey JM, Garcia-Garcia A (2012) Tissue inhibitor of metalloproteinases in oral squamous cell carcinomas: a therapeutic target? Cancer Lett 323(1):11–19. doi:10.1016/j.canlet.2012.03.040

    PubMed  Google Scholar 

  108. Ohara T, Kawashiri S, Tanaka A, Noguchi N, Kitahara H, Okamune A, Kato K, Hase T, Nakaya H, Yoshizawa K (2009) Integrin expression levels correlate with invasion, metastasis and prognosis of oral squamous cell carcinoma. Pathol Oncol Res 15(3):429–436. doi:10.1007/s12253-008-9142-9

    CAS  PubMed  Google Scholar 

  109. Ryu MH, Park HM, Chung J, Lee CH, Park HR (2010) Hypoxia-inducible factor-1alpha mediates oral squamous cell carcinoma invasion via upregulation of alpha5 integrin and fibronectin. Biochem Biophys Res Commun 393(1):11–15. doi:10.1016/j.bbrc.2010.01.060

    CAS  PubMed  Google Scholar 

  110. Li HX, Zheng JH, Fan HX, Li HP, Gao ZX, Chen D (2013) Expression of alphavbeta6 integrin and collagen fibre in oral squamous cell carcinoma: association with clinical outcomes and prognostic implications. J Oral Pathol Med. doi:10.1111/jop.12044

    PubMed Central  Google Scholar 

  111. Hamidi S, Salo T, Kainulainen T, Epstein J, Lerner K, Larjava H (2000) Expression of alpha(v)beta6 integrin in oral leukoplakia. Br J Cancer 82(8):1433–1440. doi:10.1054/bjoc.1999.1130

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Nelson BH (2008) The impact of T-cell immunity on ovarian cancer outcomes. Immunol Rev 222:101–116. doi:10.1111/j.1600-065X.2008.00614.x

    CAS  PubMed  Google Scholar 

  113. Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH (2010) Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29(8):1093–1102. doi:10.1038/onc.2009.416

    CAS  PubMed  Google Scholar 

  114. Yang L, Pang Y, Moses HL (2010) TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31(6):220–227. doi:10.1016/j.it.2010.04.002

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182(8):4499–4506. doi:10.4049/jimmunol.0802740

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Paulos CM, Kaiser A, Wrzesinski C, Hinrichs CS, Cassard L, Boni A, Muranski P, Sanchez-Perez L, Palmer DC, Yu Z, Antony PA, Gattinoni L, Rosenberg SA, Restifo NP (2007) Toll-like receptors in tumor immunotherapy. Clin Cancer Res 13(18 Pt 1):5280–5289. doi:10.1158/1078-0432.ccr-07-1378

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Chuang HC, Huang CC, Chien CY, Chuang JH (2012) Toll-like receptor 3-mediated tumor invasion in head and neck cancer. Oral Oncol 48(3):226–232. doi:10.1016/j.oraloncology.2011.10.008

    CAS  PubMed  Google Scholar 

  118. Sun Z, Luo Q, Ye D, Chen W, Chen F (2012) Role of toll-like receptor 4 on the immune escape of human oral squamous cell carcinoma and resistance of cisplatin-induced apoptosis. Mol Cancer 11:33. doi:10.1186/1476-4598-11-33

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Ahn MY, Kwon SM, Cheong HH, Park JH, Lee J, Min SK, Ahn SG, Yoon JH (2012) Toll-like receptor 7 agonist, imiquimod, inhibits oral squamous carcinoma cells through apoptosis and necrosis. J Oral Pathol Med 41(7):540–546. doi:10.1111/j.1600-0714.2012.01158.x

    CAS  PubMed  Google Scholar 

  120. Min R, Zun Z, Siyi L, Wenjun Y, Lizheng W, Chenping Z (2011) Increased expression of Toll-like receptor-9 has close relation with tumour cell proliferation in oral squamous cell carcinoma. Arch Oral Biol 56(9):877–884. doi:10.1016/j.archoralbio.2011.01.010

    PubMed  Google Scholar 

  121. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899. doi:10.1016/j.cell.2010.01.025

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Shibata M, Kodani I, Osaki M, Araki K, Adachi H, Ryoke K, Ito H (2005) Cyclo-oxygenase-1 and -2 expression in human oral mucosa, dysplasias and squamous cell carcinomas and their pathological significance. Oral Oncol 41(3):304–312. doi:10.1016/j.oraloncology.2004.09.009

    CAS  PubMed  Google Scholar 

  123. Kurihara Y, Hatori M, Ando Y, Ito D, Toyoshima T, Tanaka M, Shintani S (2009) Inhibition of cyclooxygenase-2 suppresses the invasiveness of oral squamous cell carcinoma cell lines via down-regulation of matrix metalloproteinase-2 production and activation. Clin Exp Metastasis 26(5):425–432. doi:10.1007/s10585-009-9241-3

    CAS  PubMed  Google Scholar 

  124. Morita Y, Hata K, Nakanishi M, Nishisho T, Yura Y, Yoneda T (2012) Cyclooxygenase-2 promotes tumor lymphangiogenesis and lymph node metastasis in oral squamous cell carcinoma. Int J Oncol 41(3):885–892. doi:10.3892/ijo.2012.1529

    CAS  PubMed  Google Scholar 

  125. Kwak YE, Jeon NK, Kim J, Lee EJ (2007) The cyclooxygenase-2 selective inhibitor celecoxib suppresses proliferation and invasiveness in the human oral squamous carcinoma. Ann NY Acad Sci 1095:99–112. doi:10.1196/annals.1397.014

    CAS  PubMed  Google Scholar 

  126. Nakahara Y, Shintani S, Mihara M, Ueyama Y, Matsumura T (2001) High frequency of homozygous deletion and methylation of p16(INK4A) gene in oral squamous cell carcinomas. Cancer Lett 163(2):221–228

    CAS  PubMed  Google Scholar 

  127. Ha PK, Califano JA (2006) Promoter methylation and inactivation of tumour-suppressor genes in oral squamous-cell carcinoma. Lancet Oncol 7(1):77–82. doi:10.1016/s1470-2045(05)70540-4

    CAS  PubMed  Google Scholar 

  128. Chang HW, Chow V, Lam KY, Wei WI, Yuen A (2002) Loss of E-cadherin expression resulting from promoter hypermethylation in oral tongue carcinoma and its prognostic significance. Cancer 94(2):386–392. doi:10.1002/cncr.10211

    CAS  PubMed  Google Scholar 

  129. Kulkarni V, Saranath D (2004) Concurrent hypermethylation of multiple regulatory genes in chewing tobacco associated oral squamous cell carcinomas and adjacent normal tissues. Oral Oncol 40(2):145–153

    CAS  PubMed  Google Scholar 

  130. Youssef EM, Lotan D, Issa JP, Wakasa K, Fan YH, Mao L, Hassan K, Feng L, Lee JJ, Lippman SM, Hong WK, Lotan R (2004) Hypermethylation of the retinoic acid receptor-beta(2) gene in head and neck carcinogenesis. Clin Cancer Res 10(5):1733–1742

    CAS  PubMed  Google Scholar 

  131. Kunkel M, Reichert TE, Benz P, Lehr HA, Jeong JH, Wieand S, Bartenstein P, Wagner W, Whiteside TL (2003) Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer 97(4):1015–1024. doi:10.1002/cncr.11159

    CAS  PubMed  Google Scholar 

  132. Kunkel M, Moergel M, Stockinger M, Jeong JH, Fritz G, Lehr HA, Whiteside TL (2007) Overexpression of GLUT-1 is associated with resistance to radiotherapy and adverse prognosis in squamous cell carcinoma of the oral cavity. Oral Oncol 43(8):796–803. doi:10.1016/j.oraloncology.2006.10.009

    CAS  PubMed  Google Scholar 

  133. Eckert AW, Lautner MH, Taubert H, Schubert J, Bilkenroth U (2008) Expression of Glut-1 is a prognostic marker for oral squamous cell carcinoma patients. Oncol Rep 20(6):1381–1385

    CAS  PubMed  Google Scholar 

  134. Zhu GQ, Tang YL, Li L, Zheng M, Jiang J, Li XY, Chen SX, Liang XH (2010) Hypoxia inducible factor 1alpha and hypoxia inducible factor 2alpha play distinct and functionally overlapping roles in oral squamous cell carcinoma. Clin Cancer Res 16(19):4732–4741. doi:10.1158/1078-0432.ccr-10-1408

    CAS  PubMed  Google Scholar 

  135. Brennan PA, Mackenzie N, Quintero M (2005) Hypoxia-inducible factor 1alpha in oral cancer. J Oral Pathol Med 34(7):385–389. doi:10.1111/j.1600-0714.2005.00335.x

    CAS  PubMed  Google Scholar 

  136. Eckert AW, Lautner MH, Schutze A, Taubert H, Schubert J, Bilkenroth U (2011) Coexpression of hypoxia-inducible factor-1alpha and glucose transporter-1 is associated with poor prognosis in oral squamous cell carcinoma patients. Histopathology 58(7):1136–1147. doi:10.1111/j.1365-2559.2011.03806.x

    PubMed  Google Scholar 

  137. Naruse T, Kawasaki G, Yanamoto S, Mizuno A, Umeda M (2011) Immunohistochemical study of VEGF expression in oral squamous cell carcinomas: correlation with the mTOR-HIF-1alpha pathway. Anticancer Res 31(12):4429–4437

    PubMed  Google Scholar 

  138. Liang X, Yang D, Hu J, Hao X, Gao J, Mao Z (2008) Hypoxia inducible factor-alpha expression correlates with vascular endothelial growth factor-C expression and lymphangiogenesis/angiogenesis in oral squamous cell carcinoma. Anticancer Res 28(3A):1659–1666

    PubMed  Google Scholar 

  139. Chaw SY, Majeed AA, Dalley AJ, Chan A, Stein S, Farah CS (2012) Epithelial to mesenchymal transition (EMT) biomarkers–E-cadherin, beta-catenin, APC and Vimentin–in oral squamous cell carcinogenesis and transformation. Oral Oncol 48(10):997–1006. doi:10.1016/j.oraloncology.2012.05.011

    CAS  PubMed  Google Scholar 

  140. Heldin CH, Vanlandewijck M, Moustakas A (2012) Regulation of EMT by TGFbeta in cancer. FEBS Lett 586(14):1959–1970. doi:10.1016/j.febslet.2012.02.037

    CAS  PubMed  Google Scholar 

  141. Shirkoohi R (2013) Epithelial mesenchymal transition from a natural gestational orchestration to a bizarre cancer disturbance. Cancer Sci 104(1):28–35. doi:10.1111/cas.12074

    CAS  PubMed  Google Scholar 

  142. Qiao B, Johnson NW, Gao J (2010) Epithelial-mesenchymal transition in oral squamous cell carcinoma triggered by transforming growth factor-beta1 is Snail family-dependent and correlates with matrix metalloproteinase-2 and -9 expressions. Int J Oncol 37(3):663–668

    CAS  PubMed  Google Scholar 

  143. Zhao D, Tang XF, Yang K, Liu JY, Ma XR (2012) Over-expression of integrin-linked kinase correlates with aberrant expression of Snail, E-cadherin and N-cadherin in oral squamous cell carcinoma: implications in tumor progression and metastasis. Clin Exp Metastasis 29(8):957–969. doi:10.1007/s10585-012-9485-1

    CAS  PubMed  Google Scholar 

  144. Melo SA, Kalluri R (2012) Molecular pathways: microRNAs as cancer therapeutics. Clin Cancer Res 18(16):4234–4239. doi:10.1158/1078-0432.ccr-11-2010

    PubMed Central  CAS  PubMed  Google Scholar 

  145. Chen CZ (2005) MicroRNAs as oncogenes and tumor suppressors. New Engl J Med 353(17):1768–1771. doi:10.1056/NEJMp058190

    CAS  PubMed  Google Scholar 

  146. Wu BH, Xiong XP, Jia J, Zhang WF (2011) MicroRNAs: new actors in the oral cancer scene. Oral Oncol 47(5):314–319. doi:10.1016/j.oraloncology.2011.03.019

    CAS  PubMed  Google Scholar 

  147. Perez-Sayans M, Pilar GD, Barros-Angueira F, Suarez-Penaranda JM, Fernandez AC, Gandara-Rey JM, Garcia-Garcia A (2012) Current trends in miRNAs and their relationship with oral squamous cell carcinoma. J Oral Pathol Med 41(6):433–443. doi:10.1111/j.1600-0714.2011.01121.x

    CAS  PubMed  Google Scholar 

  148. Merritt WM, Lin YG, Han LY, Kamat AA, Spannuth WA, Schmandt R, Urbauer D, Pennacchio LA, Cheng JF, Nick AM, Deavers MT, Mourad-Zeidan A, Wang H, Mueller P, Lenburg ME, Gray JW, Mok S, Birrer MJ, Lopez-Berestein G, Coleman RL, Bar-Eli M, Sood AK (2008) Dicer, Drosha, and outcomes in patients with ovarian cancer. New Engl J Med 359(25):2641–2650. doi:10.1056/NEJMoa0803785

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Li J, Huang H, Sun L, Yang M, Pan C, Chen W, Wu D, Lin Z, Zeng C, Yao Y, Zhang P, Song E (2009) MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin Cancer Res 15(12):3998–4008. doi:10.1158/1078-0432.ccr-08-3053

    CAS  PubMed  Google Scholar 

  150. Liu X, Wang A, Heidbreder CE, Jiang L, Yu J, Kolokythas A, Huang L, Dai Y, Zhou X (2010) MicroRNA-24 targeting RNA-binding protein DND1 in tongue squamous cell carcinoma. FEBS Lett 584(18):4115–4120. doi:10.1016/j.febslet.2010.08.040

    PubMed Central  CAS  PubMed  Google Scholar 

  151. Liu X, Yu J, Jiang L, Wang A, Shi F, Ye H, Zhou X (2009) MicroRNA-222 regulates cell invasion by targeting matrix metalloproteinase 1 (MMP1) and manganese superoxide dismutase 2 (SOD2) in tongue squamous cell carcinoma cell lines. Cancer Genomics Proteomics 6(3):131–139

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Chang KW, Liu CJ, Chu TH, Cheng HW, Hung PS, Hu WY, Lin SC (2008) Association between high miR-211 microRNA expression and the poor prognosis of oral carcinoma. J Dental Res 87(11):1063–1068

    CAS  Google Scholar 

  153. Liu CJ, Tsai MM, Hung PS, Kao SY, Liu TY, Wu KJ, Chiou SH, Lin SC, Chang KW (2010) miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Res 70(4):1635–1644. doi:10.1158/0008-5472.can-09-2291

    CAS  PubMed  Google Scholar 

  154. Liu CJ, Kao SY, Tu HF, Tsai MM, Chang KW, Lin SC (2010) Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer. Oral Dis 16(4):360–364. doi:10.1111/j.1601-0825.2009.01646.x

    PubMed  Google Scholar 

  155. Yu ZW, Zhong LP, Ji T, Zhang P, Chen WT, Zhang CP (2010) MicroRNAs contribute to the chemoresistance of cisplatin in tongue squamous cell carcinoma lines. Oral Oncol 46(4):317–322. doi:10.1016/j.oraloncology.2010.02.002

    CAS  PubMed  Google Scholar 

  156. Hebert C, Norris K, Scheper MA, Nikitakis N, Sauk JJ (2007) High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol Cancer 6:5. doi:10.1186/1476-4598-6-5

    PubMed Central  PubMed  Google Scholar 

  157. Wong TS, Liu XB, Chung-Wai Ho A, Po-Wing Yuen A, Wai-Man Ng R, Ignace Wei W (2008) Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. Int J Cancer 123(2):251–257. doi:10.1002/ijc.23583

    CAS  PubMed  Google Scholar 

  158. Mutallip M, Nohata N, Hanazawa T, Kikkawa N, Horiguchi S, Fujimura L, Kawakami K, Chiyomaru T, Enokida H, Nakagawa M, Okamoto Y, Seki N (2011) Glutathione S-transferase P1 (GSTP1) suppresses cell apoptosis and its regulation by miR-133alpha in head and neck squamous cell carcinoma (HNSCC). Int J Mol Med 27(3):345–352. doi:10.3892/ijmm.2010.589

    CAS  PubMed  Google Scholar 

  159. Jiang L, Liu X, Chen Z, Jin Y, Heidbreder CE, Kolokythas A, Wang A, Dai Y, Zhou X (2010) MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells. Biochem J 432(1):199–205. doi:10.1042/bj20100859

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Hunt S, Jones AV, Hinsley EE, Whawell SA, Lambert DW (2011) MicroRNA-124 suppresses oral squamous cell carcinoma motility by targeting ITGB1. FEBS Lett 585(1):187–192. doi:10.1016/j.febslet.2010.11.038

    CAS  PubMed  Google Scholar 

  161. Kuniyasu H, Oue N, Wakikawa A, Shigeishi H, Matsutani N, Kuraoka K, Ito R, Yokozaki H, Yasui W (2002) Expression of receptors for advanced glycation end-products (RAGE) is closely associated with the invasive and metastatic activity of gastric cancer. J Pathol 196(2):163–170. doi:10.1002/path.1031

    CAS  PubMed  Google Scholar 

  162. Kuniyasu H, Chihara Y, Kondo H (2003) Differential effects between amphoterin and advanced glycation end products on colon cancer cells. Int J Cancer 104(6):722–727. doi:10.1002/ijc.11016

    CAS  PubMed  Google Scholar 

  163. Kuniyasu H, Yano S, Sasaki T, Sasahira T, Sone S, Ohmori H (2005) Colon cancer cell-derived high mobility group 1/amphoterin induces growth inhibition and apoptosis in macrophages. Am J Pathol 166(3):751–760. doi:10.1016/s0002-9440(10)62296-1

    PubMed Central  CAS  PubMed  Google Scholar 

  164. Tang D, Shi Y, Jang L, Wang K, Xiao W, Xiao X (2005) Heat shock response inhibits release of high mobility group box 1 protein induced by endotoxin in murine macrophages. Shock 23(5):434–440

    CAS  PubMed  Google Scholar 

  165. Kuniyasu H, Chihara Y, Kondo H, Ohmori H, Ukai R (2003) Amphoterin induction in prostatic stromal cells by androgen deprivation is associated with metastatic prostate cancer. Oncol Rep 10(6):1863–1868

    CAS  PubMed  Google Scholar 

  166. Sasahira T, Akama Y, Fujii K, Kuniyasu H (2005) Expression of receptor for advanced glycation end products and HMGB1/amphoterin in colorectal adenomas. Virchows Arch 446(4):411–415. doi:10.1007/s00428-005-1210-x

    CAS  PubMed  Google Scholar 

  167. Sasahira T, Kirita T, Bhawal UK, Yamamoto K, Ohmori H, Fujii K, Kuniyasu H (2007) Receptor for advanced glycation end products (RAGE) is important in the prediction of recurrence in human oral squamous cell carcinoma. Histopathology 51(2):166–172. doi:10.1111/j.1365-2559.2007.02739.x

    CAS  PubMed  Google Scholar 

  168. Sasahira T, Kirita T, Bhawal UK, Ikeda M, Nagasawa A, Yamamoto K, Kuniyasu H (2007) The expression of receptor for advanced glycation end products is associated with angiogenesis in human oral squamous cell carcinoma. Virchows Arch 450(3):287–295. doi:10.1007/s00428-006-0359-2

    CAS  PubMed  Google Scholar 

  169. Bhawal UK, Ozaki Y, Nishimura M, Sugiyama M, Sasahira T, Nomura Y, Sato F, Fujimoto K, Sasaki N, Ikeda MA, Tsuji K, Kuniyasu H, Kato Y (2005) Association of expression of receptor for advanced glycation end products and invasive activity of oral squamous cell carcinoma. Oncology 69(3):246–255. doi:10.1159/000087910

    CAS  PubMed  Google Scholar 

  170. Yamamoto K, Kitayama W, Denda A, Sasahira T, Kuniyasu H, Kirita T (2006) Expression of receptor for advanced glycation end products during rat tongue carcinogenesis by 4-nitroquinoline 1-oxide and effect of a selective cyclooxygenase-2 inhibitor, etodolac. Pathobiology 73(6):317–324. doi:10.1159/000099127

    CAS  PubMed  Google Scholar 

  171. Bosserhoff AK, Moser M, Buettner R (2004) Characterization and expression pattern of the novel MIA homolog TANGO. Gene Expr Patterns 4(4):473–479. doi:10.1016/j.modgep.2003.12.002

    CAS  PubMed  Google Scholar 

  172. Bosserhoff AK, Moser M, Hein R, Landthaler M, Buettner R (1999) In situ expression patterns of melanoma-inhibiting activity (MIA) in melanomas and breast cancers. J Pathol 187(4):446–454. doi:10.1002/(sici)1096-9896(199903)187:4<446::aid-path267>3.0.co;2-y

    CAS  PubMed  Google Scholar 

  173. Perez RP, Zhang P, Bosserhoff AK, Buettner R, Abu-Hadid M (2000) Expression of melanoma inhibitory activity in melanoma and nonmelanoma tissue specimens. Hum Pathol 31(11):1381–1388

    CAS  PubMed  Google Scholar 

  174. Jachimczak P, Apfel R, Bosserhoff AK, Fabel K, Hau P, Tschertner I, Wise P, Schlingensiepen KH, Schuler-Thurner B, Bogdahn U (2005) Inhibition of immunosuppressive effects of melanoma-inhibiting activity (MIA) by antisense techniques. Int J Cancer 113(1):88–92. doi:10.1002/ijc.20549

    CAS  PubMed  Google Scholar 

  175. Bosserhoff AK, Stoll R, Sleeman JP, Bataille F, Buettner R, Holak TA (2003) Active detachment involves inhibition of cell-matrix contacts of malignant melanoma cells by secretion of melanoma inhibitory activity. Lab Invest 83(11):1583–1594

    CAS  PubMed  Google Scholar 

  176. Bauer R, Humphries M, Fassler R, Winklmeier A, Craig SE, Bosserhoff AK (2006) Regulation of integrin activity by MIA. J Biol Chem 281(17):11669–11677. doi:10.1074/jbc.M511367200

    CAS  PubMed  Google Scholar 

  177. Sasahira T, Kirita T, Oue N, Bhawal UK, Yamamoto K, Fujii K, Ohmori H, Luo Y, Yasui W, Bosserhoff AK, Kuniyasu H (2008) High mobility group box-1-inducible melanoma inhibitory activity is associated with nodal metastasis and lymphangiogenesis in oral squamous cell carcinoma. Cancer Sci 99(9):1806–1812. doi:10.1111/j.1349-7006.2008.00894.x

    CAS  PubMed  Google Scholar 

  178. Hellerbrand C, Bataille F, Schlegel J, Hartmann A, Muhlbauer M, Scholmerich J, Buttner R, Hofstadter F, Bosserhoff AK (2005) In situ expression patterns of melanoma inhibitory activity 2 in healthy and diseased livers. Liver Int 25(2):357–366. doi:10.1111/j.1478-3231.2005.01099.x

    CAS  PubMed  Google Scholar 

  179. Bosserhoff AK, Moser M, Scholmerich J, Buettner R, Hellerbrand C (2003) Specific expression and regulation of the new melanoma inhibitory activity-related gene MIA2 in hepatocytes. J Biol Chem 278(17):15225–15231. doi:10.1074/jbc.M212639200

    CAS  PubMed  Google Scholar 

  180. Hellerbrand C, Amann T, Schlegel J, Wild P, Bataille F, Spruss T, Hartmann A, Bosserhoff AK (2008) The novel gene MIA2 acts as a tumour suppressor in hepatocellular carcinoma. Gut 57(2):243–251. doi:10.1136/gut.2007.129544

    CAS  PubMed  Google Scholar 

  181. Kurihara M, Kirita T, Sasahira T, Ohmori H, Matsushima S, Yamamoto K, Bosserhoff AK, Kuniyasu H (2013) Protumoral roles of melanoma inhibitory activity 2 in oral squamous cell carcinoma. Br J Cancer 108(7):1460–1469. doi:10.1038/bjc.2013.27

    PubMed Central  CAS  PubMed  Google Scholar 

  182. Arndt S, Bosserhoff AK (2006) TANGO is a tumor suppressor of malignant melanoma. Int J Cancer 119(12):2812–2820. doi:10.1002/ijc.22242

    CAS  PubMed  Google Scholar 

  183. Arndt S, Bosserhoff AK (2007) Reduced expression of TANGO in colon and hepatocellular carcinomas. Oncol Rep 18(4):885–891

    CAS  PubMed  Google Scholar 

  184. Bosserhoff AK, Buettner R (2002) Expression, function and clinical relevance of MIA (melanoma inhibitory activity). Histol Histopathol 17(1):289–300

    CAS  PubMed  Google Scholar 

  185. Thiele CJ, Li Z, McKee AE (2009) On Trk–the TrkB signal transduction pathway is an increasingly important target in cancer biology. Clin Cancer Res 15(19):5962–5967. doi:10.1158/1078-0432.ccr-08-0651

    PubMed Central  CAS  PubMed  Google Scholar 

  186. Laramore C, Maymind E, Shifman MI (2011) Expression of neurotrophin and its tropomyosin-related kinase receptors (Trks) during axonal regeneration following spinal cord injury in larval lamprey. Neuroscience 183:265–277. doi:10.1016/j.neuroscience.2011.03.024

    CAS  PubMed  Google Scholar 

  187. Bounacer A, Schlumberger M, Wicker R, Du-Villard JA, Caillou B, Sarasin A, Suarez HG (2000) Search for NTRK1 proto-oncogene rearrangements in human thyroid tumours originated after therapeutic radiation. Br J Cancer 82(2):308–314. doi:10.1054/bjoc.1999.0920

    PubMed Central  CAS  PubMed  Google Scholar 

  188. Davidson B, Reich R, Lazarovici P, Nesland JM, Skrede M, Risberg B, Trope CG, Florenes VA (2003) Expression and activation of the nerve growth factor receptor TrkA in serous ovarian carcinoma. Clin Cancer Res 9(6):2248–2259

    CAS  PubMed  Google Scholar 

  189. Yang ZF, Ho DW, Lam CT, Luk JM, Lum CT, Yu WC, Poon RT, Fan ST (2005) Identification of brain-derived neurotrophic factor as a novel functional protein in hepatocellular carcinoma. Cancer Res 65(1):219–225

    CAS  PubMed  Google Scholar 

  190. Sclabas GM, Fujioka S, Schmidt C, Li Z, Frederick WA, Yang W, Yokoi K, Evans DB, Abbruzzese JL, Hess KR, Zhang W, Fidler IJ, Chiao PJ (2005) Overexpression of tropomyosin-related kinase B in metastatic human pancreatic cancer cells. Clin Cancer Res 11(2 Pt 1):440–449

    CAS  PubMed  Google Scholar 

  191. Nakagawara A, Azar CG, Scavarda NJ, Brodeur GM (1994) Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 14(1):759–767

    PubMed Central  CAS  PubMed  Google Scholar 

  192. Yu X, Liu L, Cai B, He Y, Wan X (2008) Suppression of anoikis by the neurotrophic receptor TrkB in human ovarian cancer. Cancer Sci 99(3):543–552. doi:10.1111/j.1349-7006.2007.00722.x

    CAS  PubMed  Google Scholar 

  193. Bouzas-Rodriguez J, Cabrera JR, Delloye-Bourgeois C, Ichim G, Delcros JG, Raquin MA, Rousseau R, Combaret V, Benard J, Tauszig-Delamasure S, Mehlen P (2010) Neurotrophin-3 production promotes human neuroblastoma cell survival by inhibiting TrkC-induced apoptosis. J Clin Invest 120(3):850–858. doi:10.1172/jci41013

    PubMed Central  CAS  PubMed  Google Scholar 

  194. Sasahira T, Ueda N, Kurihara M, Matsushima S, Ohmori H, Fujii K, Bhawal UK, Yamamoto K, Kirita T, Kuniyasu H (2013) Tropomyosin receptor kinases B and C are tumor progressive and metastatic marker in colorectal carcinoma. Hum Pathol. doi:10.1016/j.humpath.2012.09.016

    PubMed  Google Scholar 

  195. Satoh F, Mimata H, Nomura T, Fujita Y, Shin T, Sakamoto S, Hamada Y, Nomura Y (2001) Autocrine expression of neurotrophins and their receptors in prostate cancer. Int J Urol 8(7):S28–34

    CAS  PubMed  Google Scholar 

  196. Nakagawara A, Arima-Nakagawara M, Scavarda NJ, Azar CG, Cantor AB, Brodeur GM (1993) Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. New Engl J Med 328(12):847–854. doi:10.1056/nejm199303253281205

    CAS  PubMed  Google Scholar 

  197. Yamashiro DJ, Liu XG, Lee CP, Nakagawara A, Ikegaki N, McGregor LM, Baylin SB, Brodeur GM (1997) Expression and function of Trk-C in favourable human neuroblastomas. Eur J Cancer 33(12):2054–2057

    CAS  PubMed  Google Scholar 

  198. Segal RA, Goumnerova LC, Kwon YK, Stiles CD, Pomeroy SL (1994) Expression of the neurotrophin receptor TrkC is linked to a favorable outcome in medulloblastoma. Proc Natl Acad Sci USA 91(26):12867–12871

    PubMed Central  CAS  PubMed  Google Scholar 

  199. Sasahira T, Ueda N, Yamamoto K, Bhawal UK, Kurihara M, Kirita T, Kuniyasu H (2013) Trks are novel oncogenes involved in the induction of neovascularization, tumor progression, and nodal metastasis in oral squamous cell carcinoma. Clin Exp Metastasis 30(2):165–176. doi:10.1007/s10585-012-9525-x

    CAS  PubMed  Google Scholar 

  200. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15(2):272–284. doi:10.1016/j.devcel.2008.07.008

    PubMed Central  CAS  PubMed  Google Scholar 

  201. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15(2):261–271. doi:10.1016/j.devcel.2008.07.002

    PubMed Central  PubMed  Google Scholar 

  202. Jiao LR, Frampton AE, Jacob J, Pellegrino L, Krell J, Giamas G, Tsim N, Vlavianos P, Cohen P, Ahmad R, Keller A, Habib NA, Stebbing J, Castellano L (2012) MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors. PLoS One 7(2):e32068. doi:10.1371/journal.pone.0032068

    PubMed Central  CAS  PubMed  Google Scholar 

  203. Donnem T, Fenton CG, Lonvik K, Berg T, Eklo K, Andersen S, Stenvold H, Al-Shibli K, Al-Saad S, Bremnes RM, Busund LT (2012) MicroRNA signatures in tumor tissue related to angiogenesis in non-small cell lung cancer. PLoS One 7(1):e29671. doi:10.1371/journal.pone.0029671

    PubMed Central  CAS  PubMed  Google Scholar 

  204. Slaby O, Redova M, Poprach A, Nekvindova J, Iliev R, Radova L, Lakomy R, Svoboda M, Vyzula R (2012) Identification of MicroRNAs associated with early relapse after nephrectomy in renal cell carcinoma patients. Genes Chromosomes Cancer 51(7):707–716. doi:10.1002/gcc.21957

    CAS  PubMed  Google Scholar 

  205. Saito Y, Friedman JM, Chihara Y, Egger G, Chuang JC, Liang G (2009) Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun 379(3):726–731. doi:10.1016/j.bbrc.2008.12.098

    CAS  PubMed  Google Scholar 

  206. Watanabe K, Emoto N, Hamano E, Sunohara M, Kawakami M, Kage H, Kitano K, Nakajima J, Goto A, Fukayama M, Nagase T, Yatomi Y, Ohishi N, Takai D (2012) Genome structure-based screening identified epigenetically silenced microRNA associated with invasiveness in non-small-cell lung cancer. Int J Cancer 130(11):2580–2590. doi:10.1002/ijc.26254

    CAS  PubMed  Google Scholar 

  207. Otsubo T, Akiyama Y, Hashimoto Y, Shimada S, Goto K, Yuasa Y (2011) MicroRNA-126 inhibits SOX2 expression and contributes to gastric carcinogenesis. PLoS One 6(1):e16617. doi:10.1371/journal.pone.0016617

    PubMed Central  CAS  PubMed  Google Scholar 

  208. Watahiki A, Wang Y, Morris J, Dennis K, O'Dwyer HM, Gleave M, Gout PW, Wang Y (2011) MicroRNAs associated with metastatic prostate cancer. PLoS One 6(9):e24950. doi:10.1371/journal.pone.0024950

    PubMed Central  CAS  PubMed  Google Scholar 

  209. Sasahira T, Kurihara M, Bhawal UK, Ueda N, Shimomoto T, Yamamoto K, Kirita T, Kuniyasu H (2012) Downregulation of miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF-A in oral cancer. Br J Cancer 107(4):700–706. doi:10.1038/bjc.2012.330

    PubMed Central  CAS  PubMed  Google Scholar 

  210. Uchida D, Kuribayashi N, Kinouchi M, Ohe G, Tamatani T, Nagai H, Miyamoto Y (2013) Expression and function of CXCR4 in human salivary gland cancers. Clin Exp Metastasis 30(2):133–142. doi:10.1007/s10585-012-9518-9

    CAS  PubMed  Google Scholar 

  211. Shintani S, Funayama T, Yoshihama Y, Alcalde RE, Ootsuki K, Terakado N, Matsumura T (1995) Expression of c-erbB family gene products in adenoid cystic carcinoma of salivary glands: an immunohistochemical study. Anticancer Res 15(6B):2623–2626

    CAS  PubMed  Google Scholar 

  212. Franchi A, Gallo O, Bocciolini C, Franchi L, Paglierani M, Santucci M (1999) Reduced E-cadherin expression correlates with unfavorable prognosis in adenoid cystic carcinoma of salivary glands of the oral cavity. Am J Clin Pathol 111(1):43–50

    CAS  PubMed  Google Scholar 

  213. Takata T, Kudo Y, Zhao M, Ogawa I, Miyauchi M, Sato S, Cheng J, Nikai H (1999) Reduced expression of p27(Kip1) protein in relation to salivary adenoid cystic carcinoma metastasis. Cancer 86(6):928–935

    CAS  PubMed  Google Scholar 

  214. Anzick SL, Chen WD, Park Y, Meltzer P, Bell D, El-Naggar AK, Kaye FJ (2010) Unfavorable prognosis of CRTC1-MAML2 positive mucoepidermoid tumors with CDKN2A deletions. Genes Chromosomes Cancer 49(1):59–69. doi:10.1002/gcc.20719

    PubMed Central  CAS  PubMed  Google Scholar 

  215. Kamarainen M, Heiskala K, Knuutila S, Heiskala M, Winqvist O, Andersson LC (2003) RELP, a novel human REG-like protein with up-regulated expression in inflammatory and metaplastic gastrointestinal mucosa. Am J Pathol 163(1):11–20. doi:10.1016/s0002-9440(10)63625-5

    PubMed Central  CAS  PubMed  Google Scholar 

  216. Oue N, Mitani Y, Aung PP, Sakakura C, Takeshima Y, Kaneko M, Noguchi T, Nakayama H, Yasui W (2005) Expression and localization of Reg IV in human neoplastic and non-neoplastic tissues: Reg IV expression is associated with intestinal and neuroendocrine differentiation in gastric adenocarcinoma. J Pathol 207(2):185–198. doi:10.1002/path.1827

    CAS  PubMed  Google Scholar 

  217. Oue N, Kuniyasu H, Noguchi T, Sentani K, Ito M, Tanaka S, Setoyama T, Sakakura C, Natsugoe S, Yasui W (2007) Serum concentration of Reg IV in patients with colorectal cancer: overexpression and high serum levels of Reg IV are associated with liver metastasis. Oncology 72(5–6):371–380. doi:10.1159/000113147

    CAS  PubMed  Google Scholar 

  218. Takehara A, Eguchi H, Ohigashi H, Ishikawa O, Kasugai T, Hosokawa M, Katagiri T, Nakamura Y, Nakagawa H (2006) Novel tumor marker REG4 detected in serum of patients with resectable pancreatic cancer and feasibility for antibody therapy targeting REG4. Cancer Sci 97(11):1191–1197. doi:10.1111/j.1349-7006.2006.00297.x

    CAS  PubMed  Google Scholar 

  219. Ohara S, Oue N, Matsubara A, Mita K, Hasegawa Y, Hayashi T, Usui T, Amatya VJ, Takeshima Y, Kuniyasu H, Yasui W (2008) Reg IV is an independent prognostic factor for relapse in patients with clinically localized prostate cancer. Cancer Sci 99(8):1570–1577. doi:10.1111/j.1349-7006.2008.00846.x

    CAS  PubMed  Google Scholar 

  220. Kuniyasu H, Oue N, Sasahira T, Yi L, Moriwaka Y, Shimomoto T, Fujii K, Ohmori H, Yasui W (2009) Reg IV enhances peritoneal metastasis in gastric carcinomas. Cell Prolif 42(1):110–121. doi:10.1111/j.1365-2184.2008.00577.x

    CAS  PubMed  Google Scholar 

  221. Sasahira T, Oue N, Kirita T, Luo Y, Bhawal UK, Fujii K, Yasui W, Kuniyasu H (2008) Reg IV expression is associated with cell growth and prognosis of adenoid cystic carcinoma in the salivary gland. Histopathology 53(6):667–675. doi:10.1111/j.1365-2559.2008.03188.x

    CAS  PubMed  Google Scholar 

  222. Lee CW, Ito K, Ito Y (2010) Role of RUNX3 in bone morphogenetic protein signaling in colorectal cancer. Cancer Res 70(10):4243–4252. doi:10.1158/0008-5472.can-09-3805

    CAS  PubMed  Google Scholar 

  223. Chuang LS, Ito Y (2010) RUNX3 is multifunctional in carcinogenesis of multiple solid tumors. Oncogene 29(18):2605–2615. doi:10.1038/onc.2010.88

    CAS  PubMed  Google Scholar 

  224. Ito K, Liu Q, Salto-Tellez M, Yano T, Tada K, Ida H, Huang C, Shah N, Inoue M, Rajnakova A, Hiong KC, Peh BK, Han HC, Ito T, Teh M, Yeoh KG, Ito Y (2005) RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer by protein mislocalization. Cancer Res 65(17):7743–7750. doi:10.1158/0008-5472.can-05-0743

    CAS  PubMed  Google Scholar 

  225. Sasahira T, Kurihara M, Yamamoto K, Bhawal UK, Kirita T, Kuniyasu H (2011) Downregulation of runt-related transcription factor 3 associated with poor prognosis of adenoid cystic and mucoepidermoid carcinomas of the salivary gland. Cancer Sci 102(2):492–497. doi:10.1111/j.1349-7006.2010.01787.x

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonori Sasahira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Sasahira, T., Kuniyasu, H. (2015). Molecular Biology of the Oral Cancer. In: Kirita, T., Omura, K. (eds) Oral Cancer. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54938-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54938-3_3

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54937-6

  • Online ISBN: 978-4-431-54938-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics