Advertisement

Iron-Catalyzed Phenanthrene Synthesis from Alkyne and Aryl Bromide Mediated by Metallic Magnesium

  • Arimasa Matsumoto
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In the previous two chapters, iron-catalyzed synthesis of fused aromatics via C–H bond activation was developed. Although the reaction proceeds under mild conditions, the use of an unstable Grignard reagent is a practical disadvantage from the viewpoint of synthetic chemistry. Therefore, the reaction using an aryl bromide under reductive conditions instead of using Grignard reagents was envisioned to develop more practical iron-catalyzed reactions.

Keywords

Iron Salt Grignard Reagent Bond Activation Aryl Bromide Carbon Nuclear Magnetic Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bogdanovic, B., & Schwickardi, M. (2000). Angewandte Chemie, 112, 4788–4790.CrossRefGoogle Scholar
  2. 2.
    Bogdanovic, B., & Schwickardi, M. (2000). Angewandte Chemie International Edition, 39, 4610–4612.CrossRefGoogle Scholar
  3. 3.
    Czaplik, W. M., Mayer, M., & Wangelin, A. J. (2009). Angewandte Chemie, 121, 616–620.CrossRefGoogle Scholar
  4. 4.
    Czaplik, W. M., Mayer, M., & Wangelin, A. J. (2009). Angewandte Chemie International Edition, 48, 607–610.CrossRefGoogle Scholar
  5. 5.
    Czaplik, W. M., Mayer, M., & Wangelin, A. J. (2011). ChemCatChem, 3, 135–138.CrossRefGoogle Scholar
  6. 6.
    Norinder, J., Matsumoto, A., Yoshikai, N., & Nakamura, E. (2008). Journal of the American Chemical Society, 130, 5858–5859.CrossRefGoogle Scholar
  7. 7.
    Yoshikai, N., Matsumoto, A., Norinder, J., & Nakamura, E. (2009). Angewandte Chemie International Edition, 48, 2925–2928.CrossRefGoogle Scholar
  8. 8.
    Yoshikai, N., Matsumoto, A., Norinder, J., & Nakamura, E. (2010) Synlett, 313–316.Google Scholar
  9. 9.
    Ilies, L., Asako, S., & Nakamura, E. (2011). Journal of the American Chemical Society, 133, 7672–7675.CrossRefGoogle Scholar
  10. 10.
    Yoshikai, N., Asako, S., Yamakawa, T., Ilies, L., & Nakamura, E. (2011). Chemistry an Asian Journal 6, 3059–3065.Google Scholar
  11. 11.
    Ilies, L., Motoaki, K., Matsumoto, A., Yoshikai, N., & Nakamura, E. (2012). Advanced Synthesis and Catalysis 354, 593–596.Google Scholar
  12. 12.
    Wu, G., Rheingold, A. L., Geib, S. J., & Heck, R. F. (1987). Organometallics, 6, 1941–1946.CrossRefGoogle Scholar
  13. 13.
    Larock, R. C., Doty, M. J., Tian, Q., & Zenner, J. M. (1997). Journal of Organic Chemistry, 62, 7536–7537.CrossRefGoogle Scholar
  14. 14.
    Still, W. C., Kahn, M., & Mitra, A. (1978). Journal of Organic Chemistry, 43, 2923–2924.CrossRefGoogle Scholar
  15. 15.
    Pangborn, A. B., Giardello, M. A., Grubbs, R. H., Rosen, R. K., & Timmers, F. J. (1996). Organometallics, 15, 1518–1520.CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Tokyo University of ScienceTokyoJapan

Personalised recommendations