Advertisement

Iron-Catalyzed Naphthalene Synthesis from Alkyne and Grignard Reagent

  • Arimasa Matsumoto
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Linear fused acenes are important structures for organic semiconductors [1]. Naphthalene is the simplest acene and the [2+2+2] annulation reaction of an aromatic ring with two alkynes via C–H bond activation is an efficient method for synthesizing naphthalenes or other acene structures

Keywords

Iron Catalyst Grignard Reagent Bond Activation Carbon Nuclear Magnetic Resonance Compound Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anthony, J. E. (2008). Angewandte Chemie International Edition, 47, 452–483.CrossRefGoogle Scholar
  2. 2.
    Herwig, W., Metlesics, W., & Zeiss, H. (1959). Journal of the American Chemical Society, 81, 6203–6207.CrossRefGoogle Scholar
  3. 3.
    Whitesides, G. M., & Ehmann, W. J. (1970). Journal of the American Chemical Society, 92, 5625–5640.CrossRefGoogle Scholar
  4. 4.
    Sakakibara, T., Tanaka, Y., & Yamasaki, T.-I. (1986). Chemistry Letter, 36, 797–800.Google Scholar
  5. 5.
    Wu, G., Rheingold, A. L., Feib, S. L., & Heck, R. F. (1941). Organometallics, 1987, 6.Google Scholar
  6. 6.
    Kawasaki, S., Satoh, T., Miura, M., & Nomura, M. (2003). Journal of Organic Chemistry, 68, 6836–6838.CrossRefGoogle Scholar
  7. 7.
    Wu, Y.-T., Huang, K.-H., Shin, C.-C., & Wu, T.-C. (2008). ChemistryA European Journal, 14, 6697–6703.Google Scholar
  8. 8.
    Yasukawa, T., Satoh, T., Miura, M., & Nomura, M. (2002). Journal of the American Chemical Society, 124, 12680–12681.CrossRefGoogle Scholar
  9. 9.
    Ueura, K., Satoh, T., & Miura, M. (2007). Journal of Organic Chemistry, 72, 5362–5367.CrossRefGoogle Scholar
  10. 10.
    Uto, T., Shimizu, M., Ueura, K., Tsurugi, H., Satoh, T., & Miura, M. (2008). Journal of Organic Chemistry, 73, 298–300.CrossRefGoogle Scholar
  11. 11.
    Umeda, N., Tsurugi, H., Satoh, T., & Miura, M. (2008). Angewandte Chemie International Edition, 47, 4019–4022.CrossRefGoogle Scholar
  12. 12.
    Fukutani, T., Hirano, K., Satoh, T., & Miura, M. (2009). Organic Letters, 11, 5198–5201.CrossRefGoogle Scholar
  13. 13.
    Umeda, N., Hirano, K., Satoh, T., Shibata, N., Sato, H., & Miura, M. (2011). Journal of Organic Chemistry, 76, 13–24.CrossRefGoogle Scholar
  14. 14.
    Fukutani, T., Hirano, K., Satoh, T., & Miura, M. (2011). Journal of Organic Chemistry, 76, 2867–2874.CrossRefGoogle Scholar
  15. 15.
    Norinder, J., Matsumoto, A., Yoshikai, N., & Nakamura, E. (2008). Journal of the American Chemical Society, 130, 5858–5859.CrossRefGoogle Scholar
  16. 16.
    Yoshikai, N., Matsumoto, A., Norinder, J., & Nakamura, E. (2009). Angewandte Chemie International Edition, 48, 2925–2928.CrossRefGoogle Scholar
  17. 17.
    Yoshikai, N., Matsumoto, A., Norinder, J., & Nakamura, E. (2010). Synlett, 2, 313–316.Google Scholar
  18. 18.
    Yoshikai, N., Mieczkowski, A., Matsumoto, A., Ilies, L., & Nakamura, E. (2010). Journal of the American Chemical Society, 132, 5568–5569.CrossRefGoogle Scholar
  19. 19.
    Ilies, L., Asako, S., & Nakamura, E. (2011). Journal of the American Chemical Society, 133, 7672–7675.CrossRefGoogle Scholar
  20. 20.
    Yoshikai, N., Asako, S., Yamakawa, T., Ilies, L., & Nakamura, E. (2011). Chemistry—Asian Journal, 6, 3059–3065.Google Scholar
  21. 21.
    Hojo, M., Murakami, Y., Aihara, H., Sakuragi, R., Baba, Y., & Hosomi, A. (2001). Angewandte Chemie International Edition, 40, 621–623.CrossRefGoogle Scholar
  22. 22.
    Shirakawa, E., Yamagami, T., Kimura, T., Yamaguchi, S., & Hayashi, T. (2005). Journal of the American Chemical Society, 127, 17164–17165.CrossRefGoogle Scholar
  23. 23.
    Yamagami, T., Shintani, R., Shirakawa, E., & Hayashi, T. (2007). Organic Letters, 9, 1045–1048.CrossRefGoogle Scholar
  24. 24.
    Zhang, D., & Ready, J. M. (2006). Journal of the American Chemical Society, 128, 15050–15051.CrossRefGoogle Scholar
  25. 25.
    Hatakeyama, T., & Nakamura, M. (2007). Journal of the American Chemical Society, 129, 9844–9845.CrossRefGoogle Scholar
  26. 26.
    Hatakeyama, T., Hashimoto, S., Ishizuka, K., & Nakamura, M. (2009). Journal of the American Chemical Society, 131, 11949–11963.CrossRefGoogle Scholar
  27. 27.
    Yoshikai, N., Mashima, H., & Nakamura, E. (2005). Journal of the American Chemical Society, 127, 17978–17979.CrossRefGoogle Scholar
  28. 28.
    Nagano, T., & Hayashi, T. (2005). Organic Letters, 7, 491–493.CrossRefGoogle Scholar
  29. 29.
    Cahiez, G., Chaboche, C., Betzer, F. M., & Ahr, M. (2005). Organic Letters, 7, 1943–1946.CrossRefGoogle Scholar
  30. 30.
    Jonas, K., Schieferstein, L., & Krüger, C. (1979). Tsay, Y-.H. Angewandte Chemie International Edition, 18, 550–551.CrossRefGoogle Scholar
  31. 31.
    Martin. R., & Fürstner, A. (2004). Angew Chem International Edition, 43, 3955–3957.Google Scholar
  32. 32.
    Still, W. C., Kahn, M., & Mitra, A. (1978). Journal of Organic Chemistry, 43, 2923–2924.CrossRefGoogle Scholar
  33. 33.
    Pangborn, A. B., Giardello, M. A., Grubbs, R. H., Rosen, R. K., & Timmers, F. J. (1996). Organometallics, 15, 1518–1520.CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Tokyo University of ScienceTokyoJapan

Personalised recommendations