Hurwitz Numbers

  • Tomoyoshi Ibukiyama
  • Masanobu Kaneko
Part of the Springer Monographs in Mathematics book series (SMM)


In this section, we briefly introduce Hurwitz’s Hurwitz generalization of Bernoulli numbers, known as the Hurwitz numbers.


Zeta Function Elliptic Function Typhoid Fever Bernoulli Number Positive Rational Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 27.
    Coates, J., Wiles, A.: Kummer’s criterion for Hurwitz numbers, in Algebraic number theory (Kyoto Internat. Sympos., RIMS, Kyoto, 1976), pp. 9–23. Japan Soc. Promotion Sci., Tokyo (1977)Google Scholar
  2. 34.
    Freudenthal, H.: Hurwitz, Adolf, in Dictionary of Scientific Biography, vols. 5 & 6. Charles Scribner’s Sons, New York (1981)Google Scholar
  3. 35.
    Gauss, C.F.: Disquisitiones Arithmeticae (1801)Google Scholar
  4. 41.
    Hilbert, D.: Adolf Hurwitz, Gedächtnisrede, Nachrichten von der k. Gesellshaft der Wissenschaften zu Göttingen (1920), pp. 75–83 (Hurwitz’s Mathematische Werke, I xiii–xx)Google Scholar
  5. 44.
    Hurwitz, A.: Über die Entwicklungskoeffizienten der lemniskatischen Funktionen. Math. Ann. 51, 196–226 (1899). (Mathematische Werke II, 342–373)Google Scholar
  6. 50.
    Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory, 2nd edn. Graduate Texts in Mathematics, vol. 84. Springer (1990)Google Scholar
  7. 58.
    Katz, N.: The congruences of Clausen-von Staudt and Kummer for Bernoulli-Hurwitz numbers. Math. Ann. 216, 1–4 (1975)CrossRefMATHMathSciNetGoogle Scholar
  8. 76.
    Pólya, G.: Some mathematicians I have known. Am. Math. Monthly 76, 746–753 (1969)CrossRefMATHGoogle Scholar
  9. 77.
    Rademacher, H.: Lectures on Elementary Number Theory, Die Grundlehren der mathematischen Wissenschaften, vol. 169. Springer (1773)Google Scholar
  10. 78.
    Reid, C.: Hilbert. Springer, Berlin-Heidelberg-New York (1970)CrossRefMATHGoogle Scholar
  11. 104.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1927)MATHGoogle Scholar
  12. 108.
    Zagier, D.: A one-sentence proof that every prime \(p \equiv 1\pmod 4\) is a sum of two squares. Am. Math. Monthly 97–2, 144 (1990)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Tomoyoshi Ibukiyama
    • 1
  • Masanobu Kaneko
    • 2
  1. 1.Osaka UniversityOsakaJapan
  2. 2.Kyushu UniversityFukuokaJapan

Personalised recommendations