p-adic Measure and Kummer’s Congruence

  • Tomoyoshi Ibukiyama
  • Masanobu Kaneko
Part of the Springer Monographs in Mathematics book series (SMM)


In modern number theory, the p-adic method or p-adic way of thinking plays an important role. As an example, there are objects called p-adic L-functions which correspond to the Dirichlet L-functions, and in fact the natural setup to understand the Kummer congruence described in Sect. 3.2 is in the context of the p-adic L-functions.


Bounded Linear Formal Power Series Projective Limit Bernoulli Number Bernoulli Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 37.
    Gouvéa, F.Q.: p-adic Numbers, an Introduction. SpringerGoogle Scholar
  2. 51.
    Iwasawa, K.: Lectures on p-adic L-functions. Annals of Math. Studies, vol. 74. Princeton University Press, Princeton (1972)Google Scholar
  3. 66.
    Lang, S.: Cyclotomic Fields, Graduate Texts in Mathematics, vol. 59. Springer (1980)Google Scholar
  4. 83.
    Serre, J.-P.: Cours d’arithmétique, Presses Universitaires de France, 1970. English translation: A course in arithmetic, Graduate Text in Mathematics, vol. 7. Springer (1973)Google Scholar
  5. 94.
    Volkenborn, A.: Ein p-adisches Integral und seine Anwendungen. I. Manuscripta Math. 7, 341–373 (1972)CrossRefMATHMathSciNetGoogle Scholar
  6. 95.
    Volkenborn, A.: Ein p-adisches Integral und seine Anwendungen. II. Manuscripta Math. 12, 17–46 (1974)CrossRefMATHMathSciNetGoogle Scholar
  7. 100.
    Washington, L.C.: Introduction to Cyclotomic Fields. Graduate Text in Mathematics, vol. 83. Springer (1982)Google Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Tomoyoshi Ibukiyama
    • 1
  • Masanobu Kaneko
    • 2
  1. 1.Osaka UniversityOsakaJapan
  2. 2.Kyushu UniversityFukuokaJapan

Personalised recommendations