Skip to main content

Applications of Integrable Nonlinear Diffusion Equations in Industrial Modelling

  • Conference paper
  • First Online:
The Impact of Applications on Mathematics

Part of the book series: Mathematics for Industry ((MFI,volume 1))

  • 949 Accesses

Abstract

There are useful integrable nonlinear diffusion equations that can be transformed directly to linear partial differential equations. The possibility of linearisation allows us to incorporate a much broader class of boundary conditions than would be available under reduction by a one-parameter Lie symmetry. By this means we can solve nonlinear boundary value problems of practical significance. Examples are given in the solidification of multi-phase materials with nonlinear thermal transport coefficients, infiltration of water in unsaturated soil and evolution of a metal surface by fourth-order curvature-driven diffusion. From this approach, there arise some open mathematical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bluman, G.W., Kumei, S., Reid, G.J.: New classes of symmetries for partial differential equations. J. Math. Phys. 29, 806–811 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Broadbridge, P.: Nonintegrability of nonlinear diffusion-convection equations in two spatial dimensions. J. Phys. A Math. Gen. 19, 1245–1257 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Broadbridge, P., Goard, J.M.: Grain boundary evolution with time dependent material properties. J. Eng. Math. 66(1–3), 87–102 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Broadbridge, P., Rogers, C.: On a nonlinear reaction-diffusion boundary-value problem: application of a Lie-BŁcklund symmetry. J. Austral. Math. Soc. (b) 34, 318–332 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Broadbridge, P., Vassiliou, P.J.: The role of symmetry and separation in surface evolution and curve shortening. Symmetry, integrability and geometry: methods and applications (SIGMA), 7, 052, 19 pages (2011). http://dx.doi.org/10.3842/SIGMA.2011.052

  6. Broadbridge, P., White, I.: Constant rate rainfall infiltration: a versatile non-linear model. 1. Analytic solution. Water Resour. Res. 24, 145–154 (1988)

    Article  Google Scholar 

  7. Cannon, J.R., Douglas, J., Hill, C.D.: A multi-boundary Stefan problem and the disappearance of phases. J. Math. Mech. 17, 21–33 (1967)

    MATH  MathSciNet  Google Scholar 

  8. Clarkson, P.A., Fokas, A.S., Ablowitz, M.J.: Hodograph transformations on linearizable partial differential equations. SIAM J. Appl. Math. 49, 1188–1209 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Edwards, M.P.: Classical symmetry reductions of nonlinear diffusion convection equations. Phys. Lett. A. 190, 149–154 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fujita, H.: The exact pattern of a concentration-dependent diffusion in a semi-infinite medium. Part I. Textile Res. J. 22(11), 757–760 (1952)

    Article  Google Scholar 

  11. Fujita, H.: The exact pattern of a concentration-dependent diffusion in a semi-infinite medium. Part II. Textile Res. J. 22(12), 823–827 (1952)

    Article  Google Scholar 

  12. Fujita, H.: The exact pattern of a concentration-dependent diffusion in a semi-infinite medium. Part III. Textile Res. J. 24, 234–240 (1954)

    Article  Google Scholar 

  13. Fulford, G.R., Broadbridge, P.: Industrial Mathematics: Case Studies in the Diffusion of Heat and Matter. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  14. Ibragimov, N.H.: CRC Handbook of Lie Group Analysis of Differential Equations, vol. 1. CRC Press, Boca Raton (1993)

    Google Scholar 

  15. Kenmochi, N.: A new proof of the uniqueness of solutions to two-phase Stefan problems for nonlinear parabolic equations. In: Hoffmann, K.-H., Sprekels, J. (eds.) Free Boundary Value Problems, pp. 101–126. Birkhauser, Basel (1990)

    Chapter  Google Scholar 

  16. Kirchhoff. :Theorie der Wärme. Leipzig (1891)

    Google Scholar 

  17. Mikhailov, A.V., Shabat, A.B., Sokolov, V.V.: The symmetry approach to classification of integrable equations. In: Zakharov, V.E. (ed.) What is Integrability ?, pp. 115–184. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  18. Mullins, W.W.: Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957)

    Article  Google Scholar 

  19. Philip, J.R.: Theory of infiltration. Adv. Hydrosci. 5, 215–296 (1969)

    Article  Google Scholar 

  20. Polyanin, A.D., Zaitsev, V.F.: Handbook of Exact Solutions for Ordinary Differential Equations, 2nd edn. Chapman-Hall/CRC Press, Boca Raton (2003)

    MATH  Google Scholar 

  21. Sander, G.C., Parlange, J.-Y., Kuhnel, V., Hogarth, W.L., Lockington, D., O’Kane, J.P.J.: Exact nonlinear solution for constant flux infiltration. J. Hydrol. 97(34), 341–346 (1988)

    Article  Google Scholar 

  22. Storm, M.L.: Heat conduction in simple metals. J. Appl. Phys. 22, 940–951 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  23. Touloukian, Y.S. (ed.): Thermophysical Properties of Matter, vol. 1. Plenum, New York (1970)

    Google Scholar 

  24. Triadis, D., Broadbridge, P.: Analytical model of infiltration under constant-concentration boundary conditions. Water Resour. Res. 46(3), W03526 (2010). doi:10.1029/2009WR008181

    Article  Google Scholar 

  25. Tritscher, P., Broadbridge, P.: A similarity solution of a multiphase Stefan problem incorporating general nonlinear heat conduction. Int. J. Heat Mass Transfer 37, 2113–2121 (1994)

    Article  MATH  Google Scholar 

  26. Tritscher, P., Broadbridge, P.: Grain boundary grooving by surface diffusion: an analytic nonlinear model for a symmetric groove. Proc. Roy. Soc. A 450, 569–587 (1995)

    Article  MATH  Google Scholar 

  27. White, I., Broadbridge, P.: Constant rate rainfall infiltration: a versatile non-linear model. 2. Applications of solutions. Water Resour. Res. 24, 155–162 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Broadbridge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this paper

Cite this paper

Broadbridge, P. (2014). Applications of Integrable Nonlinear Diffusion Equations in Industrial Modelling. In: Wakayama, M., et al. The Impact of Applications on Mathematics. Mathematics for Industry, vol 1. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54907-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54907-9_26

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54906-2

  • Online ISBN: 978-4-431-54907-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics