Skip to main content

Interactions in Mixed Lipid Bilayers

  • Conference paper
  • First Online:
The Impact of Applications on Mathematics

Part of the book series: Mathematics for Industry ((MFI,volume 1))

  • 951 Accesses

Abstract

Fundamental interactions in mixed lipid bilayers are reviewed and discussed to clarify their influences on lipid microdomain formation. First, we describe a phase-separating elastic system of mixed lipid bilayers containing elastic and trans-bilayer interactions. The model can reflect characteristic properties of the bilayer, such as macroscopic elastic moduli and microscopic properties of the constituent molecules, so that we are able to analyze how the composition of the bilayer affects on the lateral morphology. Furthermore, it enables us to examine the interacting effects one by one. It is shown that the elastic interaction can stabilize intramembrane subdomain structures by secondary bifurcations of the steady states, even in simple situations with homogeneous and isotropic rigidity. On the other hand, the trans-bilayer coupling interaction may regulate the symmetry of the two leaflets of the bilayer. Indeed, simulations show us different mechanisms of synchronized lipid sorting and deformation of the bilayer. The fundamental interactions, together with further protein–protein and protein–lipid interactions, may be utilized depending on the situation to organize appropriate morphological structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allender, D.W., Schick, M.: Phase separation in bilayer lipid membranes: effects on the inner leaf due to coupling to the outer leaf. Biophys. J. 91, 2928–2935 (2006)

    Article  Google Scholar 

  2. Baciu, C.L., May, S.: Stability of charged, mixed lipid bilayers: effect of electrostatic coupling between the monolayers. J. Phys. Condens. Matter 16, S2455 (2004)

    Article  Google Scholar 

  3. Baumgart, T., Hess, S.T., Webb, W.W.: Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425, 821–824 (2003)

    Article  Google Scholar 

  4. Bozic, B., Kralj-Iglic, V., Svetina, S.: Coupling between vesicle shape and lateral distribution of mobile membrane inclusions. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73, 041915 (2006)

    Article  Google Scholar 

  5. Brown, D.A., London, E.: Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275, 17221–17224 (2000)

    Article  Google Scholar 

  6. Cahn, J., Hilliard, J.: Free energy of a nonuniform system: interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  7. Chazal, N., Gerlier, D.: Virus entry, assembly, budding, and membrane rafts. Microbiol. Mol. Biol. Rev. 67, 226–237 (2003)

    Article  Google Scholar 

  8. Collins, M.D., Keller, S.L.: Tuning lipid mixtures to induce or suppress domain formation across leaflets of unsupported asymmetric bilayers. Proc. Natl. Acad. Sci. USA 105, 124–128 (2008)

    Article  Google Scholar 

  9. Cooke, I.R., Deserno, M.: Coupling between lipid shape and membrane curvature. Biophys. J. 91, 487–495 (2006)

    Article  Google Scholar 

  10. Derganc, J.: Curvature-driven lateral segregation of membrane constituents in Golgi cisternae. Phys. Biol. 4, 317–324 (2007)

    Article  Google Scholar 

  11. Dietrich, C., Bagatolli, L.A., Volovyk, Z.N., Thompson, N.L., Levi, M., Jacobson, K., Gratton, E.: Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417–1428 (2001)

    Article  Google Scholar 

  12. Dietrich, C., Volovyk, Z.N., Levi, M., Thompson, N.L., Jacobson, K.: Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc. Natl. Acad. Sci. USA 98, 10642–10647 (2001)

    Article  Google Scholar 

  13. Hamilton, J.A.: Fast flip-flop of cholesterol and fatty acids in membranes: implications for membrane transport proteins. Curr. Opin. Lipidol. 14, 263–271 (2003)

    Article  Google Scholar 

  14. Hanzal-Bayer, M.F., Hancock, J.F.: Lipid rafts and membrane traffic. FEBS Lett. 581, 2098–2104 (2007)

    Article  Google Scholar 

  15. Heinrich, M., Tian, A., Esposito, C., Baumgart, T.: Dynamic sorting of lipids and proteins in membrane tubes with a moving phase boundary. Proc. Natl. Acad. Sci. USA 107, 7208–7213 (2010)

    Article  Google Scholar 

  16. Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. (C) 28, 693–703 (1973)

    Google Scholar 

  17. Hirose, Y., Komura, S., Andelman, D.: Coupled modulated bilayers: a phenomenological model. Chem. Phys. Chem. 10, 2839–2846 (2009)

    Article  Google Scholar 

  18. Huttner, W.B., Zimmerberg, J.: Implications of lipid microdomains for membrane curvature, budding and fission. Curr. Opin. Cell Biol. 13, 478–484 (2001)

    Article  Google Scholar 

  19. Kamal, M., Millis, D., Grzybek, M., Howard, J.: Measurement of the membrane curvature preference of phospholipids reveals only weak coupling between lipid shape and leaflet curvature. Proc. Natl. Acad. Sci. USA 106, 22245–22250 (2009)

    Article  Google Scholar 

  20. Kodama, H., Komura, S.: Frustration-induced ripple phase in bilayer membranes. J. Phys. II Fr. 3, 1305–1311 (1993)

    Google Scholar 

  21. Komura, S., Shimokawa, N., Andelman, D.: Tension-induced morphological transition in mixed lipid bilayers. Langmuir 22, 6771–6774 (2006)

    Article  Google Scholar 

  22. Leibler, S.: Curvature instability in membranes. J. Phys. 47, 507–516 (1986)

    Article  Google Scholar 

  23. Leibler, S., Andelman, D.: Ordered and curved meso-structures in membranes and amphiphilic films. J. Phys. (Paris) 48, 2013–2018 (1987)

    Article  Google Scholar 

  24. Lewis, B.A., Engelman, D.M.: Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J. Mol. Biol. 166, 211–217 (1983)

    Article  Google Scholar 

  25. Liang, Q., Ma, Y.Q.: Curvature-induced lateral organization in mixed lipid bilayers supported on a corrugated substrate. J. Phys. Chem. B 113, 8048–8055 (2009)

    Google Scholar 

  26. MacKintosh, F.C., Safran, S.A.: Phase separation and curvature of bilayer membranes. Phys. Rev. E 47, 1180–1183 (1993)

    Article  Google Scholar 

  27. May, S.: Trans-monolayer coupling of fluid domains in lipid bilayers. Soft Matter 5, 3148–3156 (2009)

    Article  Google Scholar 

  28. Mercker, M., Ptashnyk, M., Kühnle, J., Hartmann, D., Weiss, M., Jäger, W.: A multiscale approach to curvature modulated sorting in biological membranes. J. Theoret. Biol. 301, 67–82 (2012)

    Article  MathSciNet  Google Scholar 

  29. Mercker, M., Richter, T., Hartmann, D.: Sorting mechanisms and communication in phase-separating coupled monolayers. J. Phys. Chem. B 115, 11739–11745 (2011)

    Article  Google Scholar 

  30. Minami, A., Yamada, K.: Domain-induced budding in buckling membranes. Eur. Phys. J. E 23, 367–374 (2007)

    Article  Google Scholar 

  31. Pande, G.: The role of membrane lipids in regulation of integrin functions. Curr. Opin. Cell Biol. 12, 569–574 (2000)

    Article  Google Scholar 

  32. Parthasarathy, R., Yu, C., Groves, J.T.: Curvature-modulated phase separation in lipid bilayer membranes. Langmuir 22, 5095–5099 (2006)

    Article  Google Scholar 

  33. Pencer, J., Jackson, A., Kučerka, N., Nieh, M.P., Katsaras, J.: The influence of curvature on membrane domains. Eur. Biophys. J. 37, 665–671 (2008)

    Article  Google Scholar 

  34. Ramaswamy, S., Toner, J., Prost, J.: Nonequilibrium fluctuations, traveling waves, and instabilities in active membranes. Phys. Rev. Lett. 84, 3494–3497 (2000)

    Article  Google Scholar 

  35. Rawicz, W., Olbrich, K.C., McIntosh, T., Needham, D., Evans, E.: Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339 (2000)

    Article  Google Scholar 

  36. Reigada, R., Buceta, J., Lindenberg, K.: Nonequilibrium patterns and shape fluctuations in reactive membranes. Phys. Rev. E 71, 051906 (2005)

    Article  MathSciNet  Google Scholar 

  37. Risselada, H.J., Marrink, S.J.: The molecular face of lipid rafts in model membranes. Proc. Natl. Acad. Sci. USA 105, 17367–17372 (2008)

    Article  Google Scholar 

  38. Risselada, H.J., Marrink, S.J.: Curvature effects on lipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations. Phys. Chem. Chem. Phys. 11, 2056–2067 (2009)

    Article  Google Scholar 

  39. Roux, A., Cuvelier, D., Nassoy, P., Prost, J., Bassereau, P., Goud, B.: Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J. 24, 1537–1545 (2005)

    Article  Google Scholar 

  40. Rozovsky, S., Kaizuka, Y., Groves, T.: Formation and spatio-temporal evolution of periodic structures in lipid bilayers. J. Am. Chem. Soc. 127, 36–37 (2005)

    Article  Google Scholar 

  41. RĂłzycki, B., Weikl, T.R., Lipowsky, R.: Stable patterns of membrane domains at corrugated substrates. Phys. Rev. Lett. 100, 098103 (2008)

    Article  Google Scholar 

  42. Safran, S.A., Pincus, P., Andelman, D.: Theory of spontaneous vesicle formation in surfactant mixtures. Science 248, 354–356 (1990)

    Article  Google Scholar 

  43. Safran, S.A., Pincus, P., Andelman, D., MacKintosh, F.C.: Stability and phase behavior of mixed surfactant vesicles. Phys. Rev. A 43, 1071–1078 (1991)

    Article  Google Scholar 

  44. Seifert, U.: Curvature-induced lateral phase segregation in two-component vesicles. Phys. Rev. Lett. 70, 1335–1338 (1993)

    Article  MathSciNet  Google Scholar 

  45. Semrau, S., Idema, T., Holtzer, L., Schmidt, T., Storm, C.: Accurate determination of elastic parameters for multicomponent membranes. Phys. Rev. Lett. 100, 088101 (2008)

    Article  Google Scholar 

  46. Simons, K., Ikonen, E.: Functional rafts in cell membranes. Nature 387, 569–572 (1997)

    Article  Google Scholar 

  47. Simons, K., Toomre, D.: Lipids rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–41 (2000)

    Article  Google Scholar 

  48. Taniguchi, T.: Shape deformation and phase separation dynamics of two-component vesicles. Phys. Rev. Lett. 76, 4444–4447 (1996)

    Article  Google Scholar 

  49. Tasaki, S.: Phase-separating elastic system of mixed lipid bilayers. Physica D 246, 23–38 (2013)

    Article  MATH  Google Scholar 

  50. Tian, A., Baumgart, T.: Sorting lipids and proteins in membrane curvature gradients. Biophys. J. 96, 2676–2688 (2009)

    Article  Google Scholar 

  51. Veatch, S.L., Keller, S.: Organization in lipid membranes containing cholesterol. Phys. Rev. Lett. 89, 268101 (2002)

    Article  Google Scholar 

  52. van der Goot, F.G., Harder, T.: Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Semin. Immunol. 13, 89–97 (2001)

    Article  Google Scholar 

  53. Veatch, S.L., Keller, S.: Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85, 3074 (2003)

    Article  Google Scholar 

  54. Veatch, S.L., Keller, S.: Miscibility phase diagrams of giant vesicles containing sphingomyelin. Phys. Rev. Lett. 94, 148101 (2005)

    Article  Google Scholar 

  55. Veatch, S.L., Keller, S.: Seeing spots: complex phase behavior in simple membranes. Biochim. Biophys. J. 1746, 172–185 (2005)

    Google Scholar 

  56. Wagner, A.J., Loew, S., May, S.: Influence of monolayer-monolayer coupling on the phase behavior of a fluid lipid bilayer. Biophys. J. 93, 4268–4277 (2007)

    Article  Google Scholar 

  57. Wagner, A.J., May, S.: Electrostatic interactions across a charged lipid bilayer. Eur. Biophys. J. 36, 293–303 (2007)

    Article  Google Scholar 

  58. Yanagisawa, M., Imai, M., Masui, T., Komura, S., Ohta, T.: Growth dynamics of domains in ternary fluid vesicles. Biophys. J. 92, 115–125 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohei Tasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this paper

Cite this paper

Tasaki, S. (2014). Interactions in Mixed Lipid Bilayers. In: Wakayama, M., et al. The Impact of Applications on Mathematics. Mathematics for Industry, vol 1. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54907-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54907-9_20

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54906-2

  • Online ISBN: 978-4-431-54907-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics