Skip to main content

Multi-scale Problems, High Performance Computing and Hybrid Numerical Methods

  • Conference paper
  • First Online:
The Impact of Applications on Mathematics

Part of the book series: Mathematics for Industry ((MFI,volume 1))

  • 936 Accesses

Abstract

The turbulent transport of a passive scalar is an important and challenging problem in many applications in fluid mechanics. It involves different range of scales in the fluid and in the scalar and requires important computational resources. In this work we show how hybrid numerical methods, combining Eulerian and Lagrangian schemes, are natural tools to address this mutli-scale problem. One in particular shows that in homogeneous turbulence experiments at various Schmidt numbers these methods allow to recover the theoretical predictions of universal scaling at a minimal cost. We also outline how hybrid methods can take advantage of heterogeneous platforms combining CPU and GPU processors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tryggvason, G., Scardovelli, R.S.: Direct Numerical Simulations of Gas-Liquid Multiphase Flows. Cambridge University Press, Zaleski (2011)

    Google Scholar 

  2. Lodato, G., Domingo, P., Vervisch, L.: Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows. J. Comput. Phys. 227(1), 5105–5143 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Batchelor, G.K.: Small-scale variation of convected quantities like temperature in turbulent fluid part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5(01), 113–133 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  4. Corrsin, S.: On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22(4), 469–473 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  5. Obukhov, A.M.: The structure of the temperature field in a turbulent flow. Dokl. Akad. Navk. SSSR 39, 391 (1949)

    Google Scholar 

  6. Kraichnan, R.: Small-scale structure of a scalar field convected by turbulence. Phys. Fluids 11, 945–953 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cottet, G.-H., Balarac, G., Coquerelle M.: Subgrid particle resolution for the turbulent transport of a passive scalar. In: Proceedings of the 12th EUROMECH European Turbulence Conference, Advances in Turbulence XII, vol. 132, pp. 779–782 (September 2009)

    Google Scholar 

  8. Gotoh, T., Hatanaka, S., Miura, H.: Spectral compact difference hybrid computation of passive scalar in isotropic turbulence. J. Comput. Phys. 231(21), 7398–7414 (2012)

    Article  MathSciNet  Google Scholar 

  9. Koumoutsakos, P., Leonard, A.: High-resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech. 296, 1–38 (1995)

    Article  MATH  Google Scholar 

  10. Cottet, G.-H., Michaux, B., Ossia, S., Vanderlinden, G.: A comparison of spectral and vortex methods in three-dimensional incompressible flows. J. Comput. Phys. 175(2), 702–712 (2002)

    Article  MATH  Google Scholar 

  11. Cottet, G.-H., Poncet, P.: Advances in direct numerical simulations of 3d wall-bounded flows by vortex-in-cell methods. J. Comput. Phys. 193(1), 136–158 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ploumhans, P., Winckelmans, G., Salmon, J., Leonard, A., Warren, M.: Vortex methods for direct numerical simulation of three-dimensional bluff body flows: application to the sphere at Re=300, 500 and 1000. J. Comput. Phys. 178(2), 427–463 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Poncet, P.: Topological aspects of the three-dimensional wake behind rotary oscillating circular cylinder. J. Fluid Mech. 517, 27–53 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hieber, S.E., Koumoutsakos, P.: A lagrangian particle level set method. J. Comput. Phys. 210(1), 342–367 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bergdorf, M., Koumoutsakos, P.K.: A Lagrangian particle-wavelet method. Multiscale Model Simul: SIAM Interdisc J 5, 980–995 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Magni, A., Cottet, G.: Accurate, non-oscillatory, remeshing schemes for particle methods. J Comput Phys. 231(1), 152–172 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cottet, G.-H., Etancelin, J.-M., Perignon, F., Picard, C.: High-order Semi-Lagrangian particle methods for transport equation: numerical analysis and implementation issues. ESAIM: Math. Model. Numer. Anal.

    Google Scholar 

  18. Lagaert, J.-B., Balarac, G., Cottet, G.-H.: Hybrid spectral-particle method for the turbulent transport of a passive scalar. J. Comput. Phys. 260(1), 127–142 (2014)

    Article  MathSciNet  Google Scholar 

  19. Rossinelli, D., Bergdorf, M., Cottet, G.-H., Koumoutsakos, P.: GPU accelerated simulations of bluff body flows using vortex methods. J. Comput. Phys. 229(9), 33163333 (2010)

    MathSciNet  Google Scholar 

  20. Sbalzarini, I.F., Walther, J.H., Bergdorf, M., Hieber, S.E., Kotsalis, E.M., Koumoutsakos, P.: PPM—a highly efficient parallel particle-mesh library for the simulation of continuum systems. J. Comput. Phys. 215, 566–588 (2006)

    Article  MATH  Google Scholar 

  21. Lesieur, M.: Turbul. Fluids. Fluid mechanics and its applications, Springer, Dordrecht (2008)

    Book  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Agence Nationale pour la Recherche (ANR) under Contracts No. ANR-2010-JCJC-091601 and ANR-2010-COSI-0009. G.-H. C. is also grateful for the support from Institut Universitaire de France. Computations reported in Sect. 3 were performed using HPC resources from GENCI-IDRIS (Grant 2012-020611).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. -H. Cottet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this paper

Cite this paper

Balarac, G., Cottet, G.H., Etancelin, J.M., Lagaert, J.B., Perignon, F., Picard, C. (2014). Multi-scale Problems, High Performance Computing and Hybrid Numerical Methods. In: Wakayama, M., et al. The Impact of Applications on Mathematics. Mathematics for Industry, vol 1. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54907-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54907-9_18

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54906-2

  • Online ISBN: 978-4-431-54907-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics