Advertisement

Interaction Between Nature and Humans

  • Naotatsu Shikazono
Chapter

Abstract

Recent increase in the amount of various kinds of waste from humans influences significantly on the interactions in earth system, causing the changes to environment. The global environmental and waste problems such as acid rain , CO2 emission, underground CO2 sequestration, geological disposal of high level nuclear waste and water and soil pollution are focused on.

Keywords

Lake Water Carbonate Carbonate Reaction Reaction Concentration Concentration Adsorption Adsorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Cited Literature

  1. Adachi Y, Shikazono N (2009) Shigenchishitsu 59:9–21 (in Japanese with English abstract)Google Scholar
  2. Ahn J (1988) Mass transfer and transport of radionuclides in fractured porous rock. D Sc Univ California, BerkleyCrossRefGoogle Scholar
  3. Bosbach D (2010) Solid-solution formation and the long-term safety of nuclear-waste disposal. In: Prieto M, Stoll H (eds) EMU notes in mineralogy, vol 10, pp 325–344Google Scholar
  4. Brookins DG (1978) Chem Geol 23:309–323CrossRefGoogle Scholar
  5. Brookins DG (1990) Gabon Waste Manag 10:285–296CrossRefGoogle Scholar
  6. Brookins DG, Abashian MS, Cohen LH, Wolenberg HA (1982) In: Topp SV (ed) Scientific basis for nuclear waste management, vol V. North-Holland Press, AmsterdamGoogle Scholar
  7. Butterfield DA, Massote GJ, McDuff RE, Lupton JE, Lilley MD (1990) J Geophys Res 95:12894–12921Google Scholar
  8. Christensen UR, Yuen DA (1984) J Geophys Res 89:4389–4402CrossRefGoogle Scholar
  9. Croviser JL, Honnorez J, Eberhart JP (1987) Geochim Cosmochim Acta 51:2987–2990Google Scholar
  10. Davies CW, Jones AL (1955) Trans Farady Soc 57:872–877Google Scholar
  11. Davis JA, Fuller CC, Cook AD (1987) Geochim Cosmochim Acta 51:1437–1490Google Scholar
  12. Dingman SC, Johnson AH (1971) Wat Res 7:1208–1215CrossRefGoogle Scholar
  13. Dobashi R, Shikazono N (2008) Chikyukagaku (Geochem) 42:79–98 (in Japanese with English abstract)Google Scholar
  14. Dykhuizen RC, Casey WH (1989) Geochim Cosmochim Acta 53:2797–2805CrossRefGoogle Scholar
  15. Feiss PG (1978) Econ Geol 73:397–404CrossRefGoogle Scholar
  16. Field RJ, Noyas RM (1977) Acc Chem Res 10:214–221CrossRefGoogle Scholar
  17. Fleming BA (1986) J Colloid Interface Sci 110:40–64CrossRefGoogle Scholar
  18. Flicher M, Ross J (1974) J Chem Phys 60:3458–3465CrossRefGoogle Scholar
  19. Fuller CC, Davis JA (1987) Geochim Cosmochim Acta 51:1491–1502CrossRefGoogle Scholar
  20. Garrels RM, Christ CL (1965) Solutions minerals and equilibria, A Harper International Student Reprint, Harper & Roe, John Weatherhill. ThermodynamicsGoogle Scholar
  21. Goldberg ED (1976) The health of the oceans. The UNESCO Press, ParisGoogle Scholar
  22. Gunter WD, Perkins EH (1993) Energy Convers Manag 34:941–948CrossRefGoogle Scholar
  23. Gunter WD, Wiwchar B, Perkins EH (1997) Miner Petrol 59:121–140CrossRefGoogle Scholar
  24. Han MW, Suess E (1989) Palaeogeogr Palaeoclimatol Palaeoecol 71:97–118CrossRefGoogle Scholar
  25. He S, Oddo JE, Tomson MB (1994a) J Colloid Interface Sci 162:297–303CrossRefGoogle Scholar
  26. He S, Oddo JE, Tomson MB (1994b) J Colloid Interface Sci 163:372–378CrossRefGoogle Scholar
  27. Hellevang H, Aagaard P, Oelkers EH, Kvamme B (2005) Environ Sci Technol 39:8281–8287CrossRefGoogle Scholar
  28. Hitchon B (1966) Aquifer disposal of CO2. Geoscience Publishing, Alberta, CanadaGoogle Scholar
  29. Hofmann AW (1972) Am J Sci 272:69–90CrossRefGoogle Scholar
  30. Hosking KFG (1951) Trans R Geol Soc Cornwall 18:309–356Google Scholar
  31. Husar RB, Husar JD (1985) J Geophys Res 90:1115–1125CrossRefGoogle Scholar
  32. Imboden DM, Gaechter R (1978) Ecol Model 4:77–98CrossRefGoogle Scholar
  33. Imboden DM, Schwarzenbach RP (1985) In: Stumm W (ed) Chemical processes in lakes. Wiley, New York, pp 1–29Google Scholar
  34. Joesten R (1977) Geochim Cosmochim Acta 41:649–670CrossRefGoogle Scholar
  35. Kashiwagi H, Shikazono N (2005) Palaeogeograph Palaeoclim Palaeoecol 199:167–185CrossRefGoogle Scholar
  36. Kharaka YK, Gunter WD, Agaarwal PK, Perkins EH, DeBraal JD (1988) SOLMINEQ.88: a computer program for geochemical modeling of water–rock interactions. U S Geological Survey. Water Resources Invest-Rep, pp 88–4227Google Scholar
  37. Kimura M (1989) In: Nihonkagakukai (ed) Chemistry of soil, pp 129–146 (in Japanese)Google Scholar
  38. Lasaga AC (1981) Rate laws of chemical reactions. In: Lasaga AC, Kirkpatrick RJ (eds) Kinetics of geochemical processes, Rev Mineral 8. Mineralogical Society of America, Washington DC, pp 1–67Google Scholar
  39. Laverov NP, Velichkin VI, Fujiwara A, Shikazono N, Aloshin AP, Asadulin EE, Golubev VN, Kryloba TL, Pek AA, Chernyshev IV (2009) Res Geol 59:342–358CrossRefGoogle Scholar
  40. Leeman WP, Carr MJ, Morris JD (1994) Geochim Cosmochim Acta 58:149–168CrossRefGoogle Scholar
  41. Mason RP, Fitzgerald WF, Morel FMM (1994) Geochim Cosmochim Acta 58:3191–3198CrossRefGoogle Scholar
  42. Matsumoto E (1983) Chikyukagaku (Geochem) 17:27–32 (in Japanese with English abstract)Google Scholar
  43. Morris J, Leeman WP, Tera F (1990) Nature 344:31–36CrossRefGoogle Scholar
  44. Muehlenbachs K (1977) Can J Earth Sci 14:771–776CrossRefGoogle Scholar
  45. Muehlenbachs K, Clayton RN (1976) J Geophys Res 81:4365–4369CrossRefGoogle Scholar
  46. Nordstrom DK (1989) Geochim Cosmochim Acta 53:1727–1740CrossRefGoogle Scholar
  47. Perkins EH, Gunter WD (1995) Aquifer disposal of CO2-rock greenhouse gases: modeling of water-rock reaction paths in a siliciclastic aquifer. In: Perkins EHG, Gunter WD, Hitchon B, Solmineq GW (eds) Introduction to ground water geochemistry. Geoscience Publishing Ltd, Alberta, CanadaGoogle Scholar
  48. Plummer LN, Wiglley TML, Parkhurst DL (1979) In: Jenne EA (ed) Chemical modeling in aqueous systems. A. C. S. Smp. Ser. No.93. American Chemical Society, Washington DC, Chap. 25, pp 539–573Google Scholar
  49. Seyfried WE Jr (1987) Annu Rev Earth Planet Sci 15:317–335CrossRefGoogle Scholar
  50. Shikazono N (2002) J Geogr (Chigaku Zasshi) 111:55–65 (in Japanese with English abstract)CrossRefGoogle Scholar
  51. Shikazono N, Ogawa Y (2009) Genshiryoku Backend Res 12:3–9 (in Japanese with English abstract)Google Scholar
  52. Shikazono N, Takino A (2002) Res Back End Nucl Energy 8:171–178 (in Japanese with English abstract)Google Scholar
  53. Shikazono N, Ohtani H, Kimura S (2003) Shigenchishitsu 53:201–206 (in Japanese with English abstract)Google Scholar
  54. Shikazono N, Harada Y, Kashiwagi H, Ikeda N (2012) Basalt: types, petrology & uses. Nova Publisher, New YorkGoogle Scholar
  55. Shikazono N, Umemura T, Arakawa T (2013) Goldschmidt conferenceGoogle Scholar
  56. Silver PG, Carlson RW (1988) Annu Rev Earth Planet Sci 16:477–541CrossRefGoogle Scholar
  57. Simmons SF, Christensen BW (1994) Am J Sci 294:361–400CrossRefGoogle Scholar
  58. Sohnel O, Mullin JW (1988) J Colloid Interface Sci 123:43–50CrossRefGoogle Scholar
  59. Southern JR, Hay WW (1977) J Geophys Res 82:3825–3842CrossRefGoogle Scholar
  60. Spycher NF, Reed MH (1989) Econ Geol 84:328–359CrossRefGoogle Scholar
  61. Sterrn KH (1954) Chem Rev 54:79–99CrossRefGoogle Scholar
  62. Stumm W, Schnoor JL (1995) In: Lerman A, Imboden D, Gat J (eds) Physics and chemistry of lakes. Springer, Berlin, pp 185–215CrossRefGoogle Scholar
  63. Stumm W, Furrer G, Kanz B (1983) Croat Chem Acta 56:593–611Google Scholar
  64. Sverjensky DA (1984) Earth Planet Sci Lett 67:70–78CrossRefGoogle Scholar
  65. Tanaka T (1994) In: Energy and Environment Research Group (ed) Consideration on CO2 problem. Nihonkogyo Shinbunsya, pp 129–140 (in Japanese)Google Scholar
  66. Tarney J, Pickering KT, Knipe RJ, Dewey JD (eds) (1991) Philosophical transactions of the royal society London A, vol 335, pp 227–418Google Scholar
  67. Umemura et al. (2014a) Appl Geochem (submitted)Google Scholar
  68. Umemura et al. (2014b) Geochem J (submitted)Google Scholar
  69. Uyeda S, Kanamori H (1979) J Geophys Rev 84:1049–1061CrossRefGoogle Scholar
  70. Villas RN, Norton D (1977) Econ Geol 72:1471–1504CrossRefGoogle Scholar
  71. Von Damm KL, Edmond JM, Measure CI, Walden B (1985a) Geochim Cosmochim Acta 49:2197–2220CrossRefGoogle Scholar
  72. Von Damm KL, Edmond JM, Measure CI, Grant B (1985b) Geochim Cosmochim Acta 49:2221–2237CrossRefGoogle Scholar
  73. Walker JCG (1985) Orig Life 16:117–127CrossRefGoogle Scholar
  74. Walsh PR, Duce RA, Fashing JL (1979) J Geophys Res 84:1719–1726CrossRefGoogle Scholar
  75. Walshe MP, Bragart SL, Schechter RS, Lake LW (1984) Am Inst Chem Eng J 30:317–328CrossRefGoogle Scholar
  76. Walther JV, Wood BJ (1984) Contrib Min Petrol 88:246–259CrossRefGoogle Scholar
  77. Weare JH, Stephens JR, Eugster HP (1976) Am J Sci 276:767–816CrossRefGoogle Scholar
  78. Welch SA, Ullman WJ (1996) Geochim Cosmochim Acta 60:2939–2948CrossRefGoogle Scholar
  79. Wells JT, Ghiorso MS (1991) Geochim Cosmochim Acta 55:2467–2481CrossRefGoogle Scholar
  80. Weres O, Yee A, Tsao L (1981) J Colloid Interface Sci 84:379–402CrossRefGoogle Scholar
  81. Weres O, Yee A, Tsao L (1982) Society of petroleum engineers J February 9–16Google Scholar
  82. White DE, Muffler LJP, Truesdell AH (1971) Econ Geol 66:75–97CrossRefGoogle Scholar
  83. Wolery TJ (1978) Some chemical aspects of hydrothermal processes at mid-oceanic ridges—a theoretical study. Ph.D. thesis Northwestern UniversityGoogle Scholar
  84. Woley TJ (1979) Calculation of chemical equilibrium between aqueous solutions and minerals: the EQ3/6 software package. Report UCRL-52658. Lawrence Livermore National Laboratory, LivermoreGoogle Scholar
  85. Wood JM, Goldberg ED (1977) In: Stumm W (ed) Global chemical cycles and their alterations by man. Springer-Verlag, Berlin, pp 137–153Google Scholar
  86. Xu T, Apps JA, Pruess K (2000) Lawrence Berkeley National Laboratory Report LBNC-47315, BerkeleyGoogle Scholar
  87. Xu T, Apps JA, Pruess K (2004) Appl Geochem 19:917–936CrossRefGoogle Scholar
  88. Yusa Y, Arai T, Kamei G, Takano H (1991) J Atomic Ener Soc Jpn 33:890–905CrossRefGoogle Scholar

Further Reading

  1. Appelo CAJ, Postma D (1993) Geochemistry, ground water and pollution. A. A. Balkema, Rotterdam/BrookfieldGoogle Scholar
  2. Brezonik PC (1994) Chemical kinetics and process dynamics in aquatic system. CRC Press, Boca RatonGoogle Scholar
  3. Brookins DG (1988) Eh-pH diagrams for geochemistry. Springer-Verlag, New YorkCrossRefGoogle Scholar
  4. Brookins DG (1984) Basis of nuclear waste disposal, geochemical approach. Gendaikogakusya (in Japanese) (trans Ishihara T, Ohashi H)Google Scholar
  5. Brookins DG, Abashian MS, Cohen LH, Wollenberg HA (1982) In: Topp SV (ed) Scientific basis for nuclear waste management, vol V. North-Holland Press, AmsterdamGoogle Scholar
  6. Bunce NJ (1991) Environmental chemistry, 2nd edn. Wuerz Publishing Ltd., Winnipeg, CanadaGoogle Scholar
  7. Fujinawa K (1991) Polluted ground water. Kyoritsu Press (in Japanese)Google Scholar
  8. Garrels RM, Mackenzie FT, Hunt C (1975) Chemical cycles and the global environment − assessing human influences. William Kaufman, Los Alamos, Cal., pp 1–206Google Scholar
  9. Hanya T (ed) (1979) Mechanism of pollution of water. Kyoritsu Press (in Japanese)Google Scholar
  10. Holland HD (1978) The chemistry of the atmosphere and oceans. Wiley, New York/Chichester/Brisbane/TorontoGoogle Scholar
  11. Holland HD (1984) Chemical evolution of the atmosphere and oceans. Princeton University Press, PrincetonGoogle Scholar
  12. Holland HD, Petersen U (1995) Living dangerously. Princeton University Press, PrincetonGoogle Scholar
  13. Imboden DM, Schwarzenbach RP (1985) In: Stumm W (ed) Chemical processes in lakes. Wiley, New York, pp 1–29Google Scholar
  14. IPCC (1994) In: Houghton JT et al (eds) Climate change 1994: radioactive forcing of climate change and an evaluattion of the IPCCIS92 emission scenarios. Cambridge University Press, CambridgeGoogle Scholar
  15. Kayane I (1972) Circulation of water. Kyoritsu Press (in Japanese)Google Scholar
  16. Kimura M (1989) In: Chemical Society of Japan (ed) Chemistry of soils, pp 126–146 (in Japanese)Google Scholar
  17. Lasaga AC (1997) Kinetic theory in the earth science. Princeton University Press, PrincetonGoogle Scholar
  18. Lerman A (1979) Geochemical processes—water and sediment environments. Wiley, New YorkGoogle Scholar
  19. Lerman A, Imboden D, Gal J (1995) Physics and chemistry of lakes, 2nd edn. Springer-Verlag, BerlinCrossRefGoogle Scholar
  20. Marini L (2007) Geological sequestration of carbon dioxide. Elsevier, New YorkGoogle Scholar
  21. Miller W, Alexander R, Chapman N, Mckinley I, Smellie J (1994) Natural analogue studies in the geological disposal of radioactive wastes. Elsevier, AmsterdamGoogle Scholar
  22. Nishimura M (1991) Environmental chemistry. Syokabo, Tokyo (in Japanese)Google Scholar
  23. Nordstrom DK, Munoz JL (1985) Geochemical thermodynamics. The Benjamin/Cummings Publishing Co, Menlo ParkGoogle Scholar
  24. P. A. G. I. S. (1984) Summary report of phase 1, a common methodological approach based on European data and models. VI. EUR 9220Google Scholar
  25. Perkins EH, Gunter WD (1995) A user’s manual for PATHARC. 94; a reaction path-mass transfer program. Alberta Research Council Report ENVTRC. 95–11, Wiley, New York, p 179Google Scholar
  26. Stumm W (1977) Global chemical cycles and their alterations by man. Dahlem Konferenzen, BerlinGoogle Scholar
  27. Stumm W (ed) (1985) Chemical processes in lakes. Wiley, New YorkGoogle Scholar
  28. Stumm W (ed) (1987) Aquatic surface chemistry. Wiley, New YorkGoogle Scholar
  29. Stumm W, Morgan JJ (1970) Aquatic chemistry. Wiley, New YorkGoogle Scholar
  30. Takamatsu T, Naito M, Fan L-T (1977) Environmental system technology. Nikkan Kogyo Shinbunsya, Tokyo (in Japanese)Google Scholar
  31. Yamanaka T (1992) Introduction to biogeochemistry. Gakkaishuppan Center, Tokyo (in Japanese)Google Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Naotatsu Shikazono
    • 1
  1. 1.Keio UniversityTokyoJapan

Personalised recommendations