Mass Transfer Mechanism

  • Naotatsu Shikazono


Mass transfer during water–rock interaction process involve reaction , diffusion and advection .

Mineral dissolution and precipitation are presented diffusion in pure in rocks and minerals and advection (Fick’s law , Three dimensional fluid flow ) mechanisms are considered.

Coupled models (reaction -fluid flow , reaction-diffusion diffusion-flow) are used interpret the compositional variations in aqueous solution and rocks (minerals ) in water–rock system .


Reaction Reaction Concentration Concentration Mass Transfer Mechanism Density Density Adsorption Adsorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Cited Literature

  1. Anbeek C (1992) Geochim Cosmochim Acta 56:3957–3970CrossRefGoogle Scholar
  2. Bischoff JL, Dickson FW (1975) Earth Planet Sci Lett 25:385–397CrossRefGoogle Scholar
  3. Blum AE, Yund RA, Lasaga AC (1990) Nature 331:431–433Google Scholar
  4. Brady PV, Walther JV (1989) Geochim Cosmochim Acta 3:2823–22830CrossRefGoogle Scholar
  5. Brantley SL (1992) In: Kharaka YK, Maest AS (eds) Water–rock interaction. Balkema, Rotterdam, pp 3–6. ISBN 90 5610075Google Scholar
  6. Brantley S (2004) In: Drever JI (ed) Treatise on geochemistry. Elsevier, Amsterdam, pp 73–118Google Scholar
  7. Brantley SL, Crane SR, Crerar DA, Hellmann R, Stallard R (1986) Geochim Cosmochim Acta 50:2349–2361CrossRefGoogle Scholar
  8. Busenberg E, Clemency CV (1976) Geochim Cosmochim Acta 40:41–46CrossRefGoogle Scholar
  9. Busenberg E, Plummer LN (1996) U S Geolog Bull 1578:139–168Google Scholar
  10. Casey WH (1987) J Geophys Res 92:8007–8013CrossRefGoogle Scholar
  11. Chase CG (1972) J Geophys Res 29:117–122Google Scholar
  12. Christy AG, Putnis A (1993) Geochim Cosmochim Acta 57:2161–2168CrossRefGoogle Scholar
  13. Claasen HC, White AF (1979) In: Jenne EA (eds) Chemical modeling in aqueous systems, pp 771–793Google Scholar
  14. Davies CW, Jones AL (1955) Trans Farady Soc 57:872–877Google Scholar
  15. Dove PM, Crerar DA (1990) Geochim Cosmochim Acta 54:4147–4156Google Scholar
  16. Dove PM, Platt FM (1996) Chem Geol 127:331–338CrossRefGoogle Scholar
  17. Fujii T (1977) In: Tatsumi T (ed) Basis of modern economic geology. University Tokyo Press, Tokyo (in Japanese)Google Scholar
  18. Fujimoto K (1987) Min Geol 37:45–54 (in Japanese with English abstract)Google Scholar
  19. Ganor J, Lasaga AC (1994) Min Mag 58A:315–316CrossRefGoogle Scholar
  20. Giggenbach WF (1984) Geochim Cosmochim Acta 48:2693–2711CrossRefGoogle Scholar
  21. Goldich SS (1938) J Geol 46:17–58CrossRefGoogle Scholar
  22. Grambow B (1985) Mat Res Soc Symp 44:15–27CrossRefGoogle Scholar
  23. Hannington MD, Petersen S, Jonasson IR, Franklin JM (1994) Geological survey of Canada open file report 2915C, 1 : 35000000 and CD-ROMGoogle Scholar
  24. Holser WT, Kaplan IR (1966) Chem Geol 1:93–135CrossRefGoogle Scholar
  25. House WA (1981) J Chem Soc Faraday Trans I 77:341–359CrossRefGoogle Scholar
  26. Humphris SE, Thompson G (1978) Geochim Cosmochim Acta 42:107–125CrossRefGoogle Scholar
  27. Inskeep WP, Bloom PR (1985) Geochim Cosmochim Acta 49:2165–2180CrossRefGoogle Scholar
  28. Kazmierczak TF, Tomson MB, Nancollas GH (1982) Crystal growth of calcite carbonate. A controlled composition kinetic study. J Phys Chem 86:103–107CrossRefGoogle Scholar
  29. Kitahara S (1960) Rev Phys Chem Jpn 30:123–130Google Scholar
  30. Lasaga AC (1980) Geochim Cosmochim Acta 44:815–828CrossRefGoogle Scholar
  31. Lasaga AC (1981a) In: Reviews in mineralogy (Am Min), vol 8, pp 69–110Google Scholar
  32. Lasaga AC (1981b) In: Reviews in mineralogy (Am Min), vol 8, pp 135–170Google Scholar
  33. Lasaga AC (1981c) In: Reviews in mineralogy (Am Min), vol 8, pp 261–320Google Scholar
  34. Lasaga AC (1984) J Geophys Res 89:4009–4025CrossRefGoogle Scholar
  35. Lasaga AC (1989) Earth Planet Sci Lett 94:417–424CrossRefGoogle Scholar
  36. Lasaga AC, Holland HD (1976) Geochim Cosmochim Acta 40:257–266CrossRefGoogle Scholar
  37. Lasaga AC, Kirkpatrick RJ (eds) (1981) Reviews in mineralogy (Am Min), vol. 8Google Scholar
  38. Lasaga A, Soler JM, Ganor J, Burch T, Nagy KL (1994) Geochim Cosmochim Acta 58:2361–2386CrossRefGoogle Scholar
  39. Li Y-H, Gregory S (1979) Geochim Cosmochim Acta 38:703–714Google Scholar
  40. Mackenzie FT, Garrels RM (1966) Am J Sci 264:507–525CrossRefGoogle Scholar
  41. Meike A (1990) Geochim Cosmochim Acta 54:3347–3352CrossRefGoogle Scholar
  42. Mogollon JL, Perez DA, Monaco SL, Ganor J, Lasaga AC (1994) Min Mag 58A:619–620CrossRefGoogle Scholar
  43. Nagy KL, Lasaga AC (1992) Geochim Cosmochim Acta 56:3093–3111CrossRefGoogle Scholar
  44. Nancollas GH, Liu ST (1975) Soc Pet Eng J 15:509CrossRefGoogle Scholar
  45. Nancollas GH, Reddy MM (1971) J Colloid Interface Sci 37:824–830CrossRefGoogle Scholar
  46. Nerlentniaks I (1980) J Geophys Res 85:4379–4397CrossRefGoogle Scholar
  47. Nielsen AE (1958) Acta Chem Scand 12:951–958CrossRefGoogle Scholar
  48. Nielsen AE (1983) In: Kolthoff IM, Elving PJ (eds) Treatise on analytical chemistry. Wiley, New York, pp 268–347Google Scholar
  49. Nielsen AE, Toft JM (1984) J Cryst Growth 67:278–288CrossRefGoogle Scholar
  50. Nishiyama T (1987) Monthly Earth 91:54–59 (in Japanese)Google Scholar
  51. Plummer LN, Wiglley TML, Parkhurst DL (1979) In: Chemical modeling in aqueous systems. A C S Sym Ser No. 93. American Chemical Society, Washington DC, pp 539–573; Chap. 25Google Scholar
  52. Reddy MM, Gaillard WD (1981) J Colloid Interface Sci 80:171–178CrossRefGoogle Scholar
  53. Reddy MM, Nancollas GH (1971) J Colloid Interface Sci 36:166–172CrossRefGoogle Scholar
  54. Rimstidt JD, Barnes HL (1980) Geochim Cosmochim Acta 44:1683–1699; Acta 54:955–969Google Scholar
  55. Sato T (1977) In: Volcanic processes in ore genesis, vol 6. Elsevier, Amsterdam, pp 129–222Google Scholar
  56. Schnoor JL (1990) In: Stumm W (ed) Aquatic chemical kinetics. Wiley, New York, pp 475–504Google Scholar
  57. Schoonen MAA, Barnes HL (1991) Geochim Cosmochim Acta 55:1505–1514CrossRefGoogle Scholar
  58. Schott J, Pettit JC (1987) In: Stumm W (ed) Aquatic surface chemistry. Wiley, New York, pp 293–312Google Scholar
  59. Shikazono N (1989) Chem Geol 76:239–247CrossRefGoogle Scholar
  60. Shikazono N, Fujimoto K (1996) Chikyukagaku (Geochem) 30:91–97 (in Japanese with English abstract)Google Scholar
  61. Shikazono N, Fujimoto K (2001) Bull Earth Res Inst Univ Tokyo 76:333–340Google Scholar
  62. Shikazono N, Shiraki R (1994) Res Geol 44:379–390 (in Japanese with English abstract)Google Scholar
  63. Shiraki R, Brantley SL (1995) Geochim Cosmochim Acta 59:1457–1471CrossRefGoogle Scholar
  64. Skagius K, Nerentnieks I (1986) Water Resour Res 22:389–398CrossRefGoogle Scholar
  65. Sorai M, Sasaki M (2010) Am Min 95:853–862CrossRefGoogle Scholar
  66. Steefel CI, Cappellen PV (1990) Geochim Cosmochim Acta 54:2657–2677CrossRefGoogle Scholar
  67. Tester JW, Wopoley WG, Robinson BA, Grigsby CO, Feerer JL (1994) Geochim Cosmochim Acta 58:2407–2420CrossRefGoogle Scholar
  68. Tivey MK, McDuff RE (1990) J Geophys Res 95:12617–12637CrossRefGoogle Scholar
  69. Uchida T (1992) Res Geol 42:175–190 (in Japanese with English abstract)Google Scholar
  70. Wells JT, Ghiorso MS (1991) Geochim Cosmochim Acta 55:2467–2481CrossRefGoogle Scholar
  71. White AF (2004) In: Drever JL (ed) Treatise on geochemistry, vol 5. Elsevier, Amsterdam, pp 133–168Google Scholar
  72. Wood BJ, Walther JV (1983) Science 222:413–415CrossRefGoogle Scholar

Further Reading

  1. Berner RA (1971) Principles of chemical sedimentology. McGraw-Hill, New YorkGoogle Scholar
  2. Berner RA (1980) Early diagenesis—a theoretical approach. Princeton University Press, PrincetonGoogle Scholar
  3. Bidoglio G, Stumm W (1994) Chemistry of aquatic systems, local and global perspectives. Kluwer, DordrechtCrossRefGoogle Scholar
  4. Cussler EL (1984) Diffusion, mass transfer in fluid systems. Cambridge University Press, CambridgeGoogle Scholar
  5. Denbigh KG, Turner JCR (1971) Chemical reactor theory. Cambridge University Press, LondonGoogle Scholar
  6. Frost AA, Pearson RG (1953) Kinetics and mechanism. Wiley, New YorkGoogle Scholar
  7. Garrels RM, Mackenzie FT (1971) Evolution of sedimentary rocks. W W Norton and Co Inc, New YorkGoogle Scholar
  8. Gordon L, Salutsky MC, Willard HH (1959) Precipitation from homogeneous solution. Wiley, New YorkGoogle Scholar
  9. Langmuir D (1997) Aqueous environmental geochemistry. Prentice-Hall, New JerseyGoogle Scholar
  10. Lasaga AC (1998) Kinetic theory in the earth sciences. Princeton University Press, PrincetonCrossRefGoogle Scholar
  11. Lerman A (1979) Geochemical processes water and sediment environments. Wiley, New YorkGoogle Scholar
  12. Levenspiel O (1972) Chemical reaction engineering, 2nd edn. Wiley, New YorkGoogle Scholar
  13. Lichtner PC, Steefel CI, Oelkers EH (eds) (1996) Reaction transport in porous media. Reviews in mineralogy (Am Min), vol 34Google Scholar
  14. Margenau H, Murphy GM (1956) The mathematics of physics and chemistry. D van Nostrand, PrincetonGoogle Scholar
  15. More FMM (1983) Principles of aquatic chemistry. Wiley, New YorkGoogle Scholar
  16. Morel FMM, Morgan JJ (1968) A numerical method of solution of chemical equilibria in aqueous systems. California Institute of Technology, PasadenaGoogle Scholar
  17. Nakano M (1991) Mass transfer in soil. University Tokyo Press, Tokyo (in Japanese)Google Scholar
  18. Nielsen AE (1964) Kinetics of precipitation. Pergamon, OxfordGoogle Scholar
  19. Phillips OM (1991) Flow and reactions in permeable rocks. Cambridge University Press, CambridgeGoogle Scholar
  20. Robinson RA, Stokes RH (1959) Electrolyte solutions. Academic, New YorkGoogle Scholar
  21. Shikazono N (2003) Geochemical and tectonic evolution of arc-backarc hydrothermal systems. Elsevier, AmsterdamGoogle Scholar
  22. Stumm W, Morgan JJ (1970) Aquatic chemistry. Wiley, New YorkGoogle Scholar
  23. Stumm W, Morgan JJ (1981) Aquatic chemistry chemical equilibria and rates in natural waters. Wiley, New YorkGoogle Scholar
  24. Takamatsu T, Naito M, Fan L-T (1977) Environmental system technology. Nikkan Kogyo Shinbunsya, Tokyo (in Japanese)Google Scholar
  25. Tosaka H (2006) Geosphere environment fluid flows: theories, models and applications. University Tokyo Press, Tokyo (in Japanese)Google Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Naotatsu Shikazono
    • 1
  1. 1.Keio UniversityTokyoJapan

Personalised recommendations