Skip to main content

Diffusion and Thermal Diffusion by Means of Dynamic Light Scattering and Laser Holography

  • Chapter
Book cover Nano/Micro Science and Technology in Biorheology
  • 800 Accesses

Abstract

Diffusion processes of biological molecules in a medium are important subjects for Nano/Micro Biorheology. Developments of the laser as a light source have made a considerable impact in the field of spectroscopy, owing to its high intensity and coherence where the diffusion processes have been studied extensively with a high precision by many researchers. In this chapter, two types of diffusion are reviewed. Firstly, self-diffusion under a homogeneous temperature condition, known as Fick’s diffusion, is shown where the diffusion coefficient of biomaterials is measured by dynamic light scattering (DLS). Second, thermal diffusion, also called the Ludwig-Soret effect, is followed-up to study biological molecules and related water-soluble polymers. Thermal diffusion occurs when the system is in nonequilibrium thermodynamically, where a temperature gradient induces a mass diffusion in the system. The experiments for studying the thermal diffusion mentioned in this chapter involve a holographic method of laser interferometry. Characterizations of these diffusion processes are related to insights on the molecular interactions between biological molecules and solvents and are utilized to understand their unique behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chu B (2007) Lase light scattering: basic principles and practice, 2nd edn. Dover, New York

    Google Scholar 

  2. Berne BJ, Pecora R (2000) Dynamic light scattering. Dover, New York

    Google Scholar 

  3. Schmitz KS (1990) An introduction to dynamic light scattering by macromolecules. Academic Press, San Diego

    Google Scholar 

  4. Schaertl W (2007) Light scattering from polymer solutions and nanoparticle dispersions: with 16 tables. Springer, Berlin

    Google Scholar 

  5. Ludwig S (1856) Sitzungsber Preuss Akad Wiss. Phys Math Kl 20:539

    Google Scholar 

  6. Soret C (1879) Sur l'état d'équilibre que prend au point de vue de sa concentration une dissolution saaline primitivement homogène dont deux parties sont portées a des températures différentes. Arch Sci Phys Nat Lyenève 3:48–61

    Google Scholar 

  7. de Groot SR, Mazur P (1984) Non-equilibrium thermodynamics. Dover, New York

    Google Scholar 

  8. Provencher SW (1982) A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput Phys Commun 27(3):213–227. http://dx.doi.org/10.1016/0010-4655(82)90173-4

  9. Provencher SW (1982) CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun 27(3):229–242. http://dx.doi.org/10.1016/0010-4655(82)90174-6

  10. Norisuye T, Shibayama M, Tamaki R, Chujo Y (1999) Time-resolved dynamic light scattering studies on gelation process of organic–inorganic polymer hybrids. Macromolecules 32(5):1528–1533. doi:10.1021/ma981306h

    Article  CAS  Google Scholar 

  11. Kita R, Takahashi A, Kaibara M, Kubota K (2002) Formation of fibrin gel in fibrinogen-thrombin system: static and dynamic light scattering study. Biomacromolecules 3(5):1013–1020. doi:10.1021/bm025545v

    Article  CAS  PubMed  Google Scholar 

  12. Srinivasan S, Saghir MZ (2011) Experimental approaches to study thermodiffusion – a review. Int J Therm Sci 50(7):1125–1137. http://dx.doi.org/10.1016/j.ijthermalsci.2011.02.022

  13. Wiegand S (2004) Thermal diffusion in liquid mixtures and polymer solutions. J Phys Condens Matter 16(10):R357

    Article  CAS  Google Scholar 

  14. Piazza R, Parola A (2008) Thermophoresis in colloidal suspensions. J Phys Condens Matter 20(15):153102

    Article  Google Scholar 

  15. Koehler W, Schaefer R (2000) <APS_2000_Kohler.pdf> Adv Polym Sci 151:1–59

    Google Scholar 

  16. Ning H, Datta S, Sottmann T, Wiegand S (2008) Soret effect of nonionic surfactants in water studied by different transient grating setups. J Phys Chem B 112(35):10927–10934. doi:10.1021/jp800942w

    Article  CAS  PubMed  Google Scholar 

  17. Giglio M, Vendramini A (1977) Soret-Type Motion of Macromolecules in Solution. Phys Rev Lett 38(1):26–30

    Article  CAS  Google Scholar 

  18. Kolodner P, Williams H, Moe C (1988) Optical measurement of the Soret coefficient of ethanol/water solutions. J Chem Phys 88(10):6512–6524

    Article  CAS  Google Scholar 

  19. Dutrieux JF, Platten JK, Chavepeyer G, Bou-Ali MM (2002) On the measurement of positive Soret coefficients. J Phys Chem B 106(23):6104–6114. doi:10.1021/jp013945r

    Article  CAS  Google Scholar 

  20. Kita R, Wiegand S, Luettmer-Strathmann J (2004) Sign change of the Soret coefficient of poly(ethylene oxide) in water/ethanol mixtures observed by thermal diffusion forced Rayleigh scattering. J Chem Phys 121(8):3874–3885. doi:10.1063/1.1771631

    Article  CAS  PubMed  Google Scholar 

  21. Nieto-Draghi C, Avalos JB, Rousseau B (2005) Computing the Soret coefficient in aqueous mixtures using boundary driven nonequilibrium molecular dynamics. J Chem Phys 122(11):114503. doi:10.1063/1.1863872

    Article  PubMed  Google Scholar 

  22. Platten JK, Bou-Ali MM, Blanco P, Madariaga JA, Santamaria C (2007) Soret coefficients in some water–methanol, water-ethanol, and water-isopropanol systems. J Phys Chem B 111(39):11524–11530. doi:10.1021/jp074206z

    Article  CAS  PubMed  Google Scholar 

  23. Wittko G, Köhler W (2007) On the temperature dependence of thermal diffusion of liquid mixtures. Europhys Lett 78(4):46007. doi:10.1209/0295-5075/78/46007

    Article  Google Scholar 

  24. Eslamian M, Saghir MZ (2009) Microscopic study and modeling of thermodiffusion in binary associating mixtures. Phys Rev E 80(6):061201. doi:10.1103/PhysRevE.80

    Article  Google Scholar 

  25. Abbasi A, Saghir MZ, Kawaji M (2009) A new approach to evaluate the thermodiffusion factor for associating mixtures. J Chem Phys 130(6):064506. doi:10.1063/1.3076926

    Article  PubMed  Google Scholar 

  26. Koniger A, Meier B, Kohler W (2009) Measurement of the Soret, diffusion, and thermal diffusion coefficients of three binary organic benchmark mixtures and of ethanol-water mixtures using a beam deflection technique. Philos Mag 89(10):907–923. doi:10.1080/14786430902814029

    Article  Google Scholar 

  27. Artola PA, Rousseau B, Galliero G (2008) A new model for thermal diffusion: kinetic approach. J Am Chem Soc 130(33):10963–10969. doi:10.1021/ja800817f

    Article  CAS  PubMed  Google Scholar 

  28. Zhang KJ, Briggs ME, Gammon RW, Sengers JV (1996) Optical measurement of the Soret coefficient and the diffusion coefficient of liquid mixtures. J Chem Phys 104(17):6881–6892. doi:10.1063/1.471355

    Article  CAS  Google Scholar 

  29. Torres JF, Komiya A, Henry D, Maruyama S (2013) Measurement of Soret and Fickian diffusion coefficients by orthogonal phase-shifting interferometry and its application to protein aqueous solutions. J Chem Phys 139(7):074203. doi:10.1063/1.4817682

    Article  PubMed  Google Scholar 

  30. Saeki S, Kuwahara N, Nakata M, Kaneko M (1976) Upper and lower critical solution temperatures in poly (ethylene glycol) solutions. Polymer 17(8):685–689

    Article  CAS  Google Scholar 

  31. Paduano L, Sartorio R, D'Errico G, Vitagliano V (1998) Mutual diffusion in aqueous solution of ethylene glycol oligomers at 25 [degree]C. J Chem Soc Faraday Trans 94(17):2571–2576. doi:10.1039/A803567I

    Article  CAS  Google Scholar 

  32. Chan J, Popov J, Kolisnek-Kehl S, Leaist D (2003) Soret coefficients for aqueous polyethylene glycol solutions and some tests of the segmental model of polymer thermal diffusion. J Solut Chem 32(3):197–214. doi:10.1023/a:1022925216642

    Article  CAS  Google Scholar 

  33. Zhang KJ, Briggs ME, Gammon RW, Sengers JV, Douglas JF (1999) Thermal and mass diffusion in a semidilute good solvent-polymer solution. J Chem Phys 111(5):2270–2282. doi:10.1063/1.479498

    Article  CAS  Google Scholar 

  34. Schimpf ME, Giddings JC (1987) Characterization of thermal diffusion in polymer solutions by thermal field-flow fractionation: effects of molecular weight and branching. Macromolecules 20(7):1561–1563. doi:10.1021/ma00173a022

    Article  CAS  Google Scholar 

  35. Semenov SN, Schimpf ME (2005) Molecular thermodiffusion (thermophoresis) in liquid mixtures. Phys Rev E 72(4):041202. doi:10.1103/PhysRevE.72.041202

    Article  Google Scholar 

  36. Zhang M, Muller-Plathe F (2006) The Soret effect in dilute polymer solutions: influence of chain length, chain stiffness, and solvent quality. J Chem Phys 125(12):124903. doi:10.1063/1.2356469

    Article  PubMed  Google Scholar 

  37. Stadelmaier D, Kohler W (2008) From small molecules to high polymers: investigation of the crossover of thermal diffusion in dilute polystyrene solutions. Macromolecules 41(16):6205–6209. doi:10.1021/ma800891p

    Article  CAS  Google Scholar 

  38. Würger A (2009) Molecular-weight dependent thermal diffusion in dilute polymer solutions. Phys Rev Lett 102(7):078302

    Article  PubMed  Google Scholar 

  39. Rauch J, Kohler W (2005) On the molar mass dependence of the thermal diffusion coefficient of polymer solutions. Macromolecules 38(9):3571–3573. doi:10.1021/ma050231w

    Article  CAS  Google Scholar 

  40. de Gans BJ, Kita R, Muller B, Wiegand S (2003) Negative thermodiffusion of polymers and colloids in solvent mixtures. J Chem Phys 118(17):8073–8081. doi:10.1063/1.1563601

    Article  Google Scholar 

  41. de Gans BJ, Kita R, Wiegand S, Luettmer-Strathmann J (2003) Unusual thermal diffusion in polymer solutions. Phys Rev Lett 91(24):245501. doi:10.1103/PhysRevLett.91.245501

    Article  PubMed  Google Scholar 

  42. Luettmer-Strathmann J (2003) Two-chamber lattice model for thermodiffusion in polymer solutions. J Chem Phys 119(5):2892–2902

    Article  CAS  Google Scholar 

  43. Luettmer-Strathmann J (2005) Lattice model for thermodiffusion in polymer solutions. Int J Thermophys 26(6):1693–1707. doi:10.1007/s10765-005-8589-0

    Article  CAS  Google Scholar 

  44. Kubota K, Fujishige S, Ando I (1990) Single-chain transition of poly(N-isopropylacrylamide) in water. J Phys Chem 94(12):5154–5158. doi:10.1021/j100375a070

    Article  CAS  Google Scholar 

  45. Kita R, Wiegand S (2005) Soret coefficient of poly(N-isopropylacrylamide)/water in the vicinity of coil-globule transition temperature. Macromolecules 38(11):4554–4556. doi:10.1021/ma050526+

    Article  CAS  Google Scholar 

  46. Kita R, Kircher G, Wiegand S (2004) Thermally induced sign change of Soret coefficient for dilute and semidilute solutions of poly(N-isopropylacrylamide) in ethanol. J Chem Phys 121(18):9140–9146. doi:10.1063/1.1803535

    Article  CAS  PubMed  Google Scholar 

  47. Kita R, Polyakov P, Wiegand S (2007) Ludwig-Soret effect of poly(N-isopropylacrylamide): temperature dependence study in monohydric alcohols. Macromolecules 40(5):1638–1642. doi:10.1021/ma0621831

    Article  CAS  Google Scholar 

  48. Kratz K, Hellweg T, Eimer W (2001) Structural changes in PNIPAM microgel particles as seen by SANS, DLS, and EM techniques. Polymer 42(15):6631–6639. doi:10.1016/s0032-3861(01)00099-4

    Article  CAS  Google Scholar 

  49. Kogure H, Nanami S, Masuda Y, Toyama Y, Kubota K (2005) Hydration and dehydration behavior of N-isopropylacrylamide gel particles. Colloid Polym Sci 283(11):1163–1171. doi:10.1007/s00396-005-1303-8

    Article  CAS  Google Scholar 

  50. Kita R, Sugaya R, Kogure H, Kubota K (2006) Thermal diffusion of PNiPAM nano gel-particle at the theta-temperature. Trans Mater Res Soc Jpn 31(3)

    Google Scholar 

  51. Wongsuwarn S, Vigolo D, Cerbino R, Howe AM, Vailati A, Piazza R, Cicuta P (2012) Giant thermophoresis of poly(N-isopropylacrylamide) microgel particles. Soft Matter 8(21):5857–5863. doi:10.1039/c2sm25061f

    Article  CAS  Google Scholar 

  52. Kishikawa Y, Wiegand S, Kita R (2010) Temperature dependence of Soret coefficient in aqueous and nonaqueous solutions of pullulan. Biomacromolecules 11(3):740–747. doi:10.1021/bm9013149

    Article  CAS  PubMed  Google Scholar 

  53. Iacopini S, Piazza R (2003) Thermophoresis in protein solutions. Europhys Lett 63(2):247–253. doi:10.1209/epl/i2003-00520-y

    Article  CAS  Google Scholar 

  54. Piazza R, Iacopini S, Triulzia B (2004) Thermophoresis as a probe of particle-solvent interactions: the case of protein solutions. Phys Chem Chem Phys 6(7):1616–1622. doi:10.1039/b312856c

    Article  CAS  Google Scholar 

  55. Sugaya R, Wolf BA, Kita R (2006) Thermal diffusion of dextran in aqueous solutions in the absence and the presence of urea. Biomacromolecules 7(2):435–440. doi:10.1021/bm050545r

    Article  CAS  PubMed  Google Scholar 

  56. Duhr S, Braun D (2006) Why molecules move along a temperature gradient. Proc Natl Acad Sci U S A 103(52):19678–19682. doi:10.1073/pnas.0603873103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Dhont JKG, Wiegand S, Duhr S, Braun D (2007) Thermodiffusion of charged colloids: single-particle diffusion. Langmuir 23(4):1674–1683. doi:10.1021/la062184m

    Article  CAS  PubMed  Google Scholar 

  58. Piazza R, Guarino A (2002) Soret effect in interacting micellar solutions. Phys Rev Lett 88(20):208302. doi:10.1103/PhysRevLett.88.208302

    Article  PubMed  Google Scholar 

  59. Blanco P, Kriegs H, Lettinga MP, Holmqvist P, Wiegand S (2011) Thermal diffusion of a stiff rod-like mutant Y21M fd-virus. Biomacromolecules 12(5):1602–1609. doi:10.1021/bm2000023

    Article  CAS  PubMed  Google Scholar 

  60. Vigolo D, Buzzaccaro S, Piazza R (2010) Thermophoresis and thermoelectricity in surfactant solutions. Langmuir 26(11):7792–7801. doi:10.1021/la904588s

    Article  CAS  PubMed  Google Scholar 

  61. Blanco P, Kriegs H, Arlt B, Wiegand S (2010) Thermal diffusion of oligosaccharide solutions: the role of chain length and structure. J Phys Chem B 114(33):10740–10747. doi:10.1021/jp104534m

    Article  CAS  PubMed  Google Scholar 

  62. Klein M, Wiegand S (2011) The Soret effect of mono-, di- and tri-glycols in ethanol. Phys Chem Chem Phys 13(15):7059–7063. doi:10.1039/c1cp00022e

    Article  Google Scholar 

  63. Kishikawa Y, Shinohara H, Maeda K, Nakamura Y, Wiegand S, Kita R (2012) Temperature dependence of thermal diffusion for aqueous solutions of monosaccharides, oligosaccharides, and polysaccharides. Phys Chem Chem Phys 14(29):10147–10153

    Article  CAS  PubMed  Google Scholar 

  64. Shinohara H, Kita R, Shinyashiki N, Yagihara S, Kabayama K, Inazu T (2013) Temperature dependent study of thermal diffusion for aqueous solutions of α-, β-, and γ- cyclodextrin. AIP Conf Proc 1518:710–713. doi:10.1063/1.4794663

  65. Stadelmaier D, Kohler W (2009) Thermal diffusion of dilute polymer solutions: the role of chain flexibility and the effective segment size. Macromolecules 42(22):9147–9152. doi:10.1021/ma901794k

    Article  CAS  Google Scholar 

  66. Wang Z, Kriegs H, Wiegand S (2012) Thermal diffusion of nucleotides. J Phys Chem B 116(25):7463–7469. doi:10.1021/jp3032644

    Article  CAS  PubMed  Google Scholar 

  67. Braun D, Libchaber A (2002) Trapping of DNA by thermophoretic depletion and convection. Phys Rev Lett 89(18):188103

    Article  PubMed  Google Scholar 

  68. Mast CB, Braun D (2010) Thermal trap for DNA replication. Phys Rev Lett 104(18):188102. doi:10.1103/PhysRevLett.104.188102

    Article  PubMed  Google Scholar 

  69. Reineck P, Wienken CJ, Braun D (2010) Thermophoresis of single stranded DNA. Electrophoresis 31(2):279–286. doi:10.1002/elps.200900505

    Article  CAS  PubMed  Google Scholar 

  70. Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S (2010) Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun 1:100. doi:10.1038/ncomms1093

    Article  PubMed  Google Scholar 

  71. Lippok S, Seidel SAI, Duhr S, Uhland K, Holthoff H-P, Jenne D, Braun D (2012) Direct detection of antibody concentration and affinity in human serum using microscale thermophoresis. Anal Chem 84(8):3523–3530. doi:10.1021/ac202923j

    Article  CAS  PubMed  Google Scholar 

  72. Iacopini S, Rusconi R, Piazza R (2006) The “macromolecular tourist”: Universal temperature dependence of thermal diffusion in aqueous colloidal suspensions. Eur Phys J E 19(1):59–67. doi:10.1140/epje/e2006-00012-9

    Article  CAS  PubMed  Google Scholar 

  73. Braibanti M, Vigolo D, Piazza R (2008) Does thermophoretic mobility depend on particle size? Phys Rev Lett 100(10):108303. doi:10.1103/PhysRevLett.100.108303

    Article  PubMed  Google Scholar 

  74. Wurger A (2006) Heat capacity-driven inverse Soret effect of colloidal nanoparticles. Europhys Lett 74(4):658–664. doi:10.1209/epl/i2005-10579-x

    Article  CAS  Google Scholar 

  75. Wurger A (2010) Thermal non-equilibrium transport in colloids. Rep Prog Phys 73(12):126601. doi:10.1088/0034-4885/73/12/126601

    Article  Google Scholar 

  76. Jiang H-R, Yoshinaga N, Sano M (2010) Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys Rev Lett 105(26):268302

    Article  PubMed  Google Scholar 

  77. Wuerger A (2009) Temperature dependence of the soret motion in colloids. Langmuir 25(12):6696–6701. doi:10.1021/la9001913

    Article  Google Scholar 

  78. Arlt B, Datta S, Sottmann T, Wiegand S (2010) Soret effect of n-octyl beta-d-glucopyranoside (C(8)G(1)) in water around the critical micelle concentration. J Phys Chem B 114(6):2118–2123. doi:10.1021/jp907988r

    Article  CAS  PubMed  Google Scholar 

  79. Ning H, Kita R, Kriegs H, Luettmer-Strathmann J, Wiegand S (2006) Thermal diffusion behavior of nonionic surfactants in water. J Phys Chem B 110(22):10746–10756. doi:10.1021/jp0572986

    Article  CAS  PubMed  Google Scholar 

  80. Ning H, Wiegand S, Kita R (2006) Soret effect in a nonionic surfactant system. Progr Colloid Polym Sci 133:111–115. doi:10.1007/3-540-32702-9_18

    CAS  Google Scholar 

  81. Maeda K, Kita R, Shinyashiki N, Yagihara S (2013) Ludwig-Soret effect of non-ionic surfactant aqueous solution studied by beam deflection method. AIP Conf Proc 1518(1):428–431

    CAS  Google Scholar 

  82. Bielenberg JR, Brenner H (2005) A hydrodynamic/Brownian motion model of thermal diffusion in liquids. Phys A Stat Mech Appl 356(2–4):279–293. http://dx.doi.org/10.1016/j.physa.2005.03.033

  83. Brenner H, Bielenberg JR (2005) A continuum approach to phoretic motions: thermophoresis. Phys A Stat Mech Appl 355(2–4):251–273. http://dx.doi.org/10.1016/j.physa.2005.03.020

  84. Rousseau B, Nieto-Draghi C, Avalos JB (2004) The role of molecular interactions in the change of sign of the Soret coefficient. Europhys Lett 67(6):976–982. doi:10.1209/epl/i2004-10136-3

    Article  CAS  Google Scholar 

  85. Kohler W, Wiegand S (2002) Thermal nonequilibrium phenomena in fluid mixtures. Springer, Berlin

    Book  Google Scholar 

  86. Srinivasan S, Saghir MZ (2013) Thermodiffusion in multicomponent mixtures. Springer, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rio Kita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kita, R. (2015). Diffusion and Thermal Diffusion by Means of Dynamic Light Scattering and Laser Holography. In: Kita, R., Dobashi, T. (eds) Nano/Micro Science and Technology in Biorheology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54886-7_5

Download citation

Publish with us

Policies and ethics