Skip to main content

Atomic Force Microscopy: Imaging and Rheology of Living Cells

  • Chapter
Nano/Micro Science and Technology in Biorheology
  • 928 Accesses

Abstract

Atomic force microscopy (AFM) has been widely used for characterizing physical properties of adherent living cells because it provides high-resolution images and accurate measurements of mechanical properties without modifications to the cells. In this chapter, we review recent advances in AFM single-cell imaging and rheology. Techniques for AFM imaging and mechanical measurements of living cells are first reviewed. We then discuss how rheological properties of cells, which are described as power-law rheology model, are quantified for single-cell diagnostics. In addition to micro- and nano-measurements of cell moduli, we introduce an AFM method combined with a micro-fabricated substrate as a force sensor for investigating how forces propagate inside cells through the cytoskeleton, which is deeply associated with various cell functions. Finally, we reviewed scanning ion conductance microscopy, which allows us to obtain noncontact image of cell membrane topography and to quantify cell membrane fluctuations that are inaccessible to AFM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig G, Quate CF (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933

    Article  PubMed  Google Scholar 

  2. Jena BP, Horber JKH (2002) Atomic force microscopy in cell biology. In: Jena BP, Horber JKH (eds) Methods in cell biology, vol 68. Academic, San Diego

    Google Scholar 

  3. Morris VJ, Kirby AR, Gunning AP (2009) Atomic force microscopy for biologists, 2nd edn. Imperial College Press, London

    Book  Google Scholar 

  4. Radmacher M (2002) Measuring the elastic properties of living cells by the atomic force microscope. In: Atomic force microscopy in cell biology. Academic Press, San Diego, pp 67–90

    Chapter  Google Scholar 

  5. Rotsch C, Radmacher M (2000) Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J 78:520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ando T et al (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci 98(22):12468–12472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ando T, Uchihashi T, Kodera N (2013) High-speed AFM and applications to biomolecular systems. Annu Rev Biophys 42:393–414

    Article  CAS  PubMed  Google Scholar 

  8. Watanabe H et al (2013) Wide-area scanner for high-speed atomic force microscopy. Rev Sci Instrum 84(5):053702

    Article  PubMed  Google Scholar 

  9. Garcia R, Herruzo ET (2012) The emergence of multifrequency force microscopy. Nat Nanotechnol 7(4):217–226

    Article  CAS  PubMed  Google Scholar 

  10. Raman A et al (2011) Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy. Nat Nanotechnol 6(12):809–814

    Article  CAS  PubMed  Google Scholar 

  11. Tetard L et al (2008) Imaging nanoparticles in cells by nanomechanical holography. Nat Nanotechnol 3(8):501–505

    Article  CAS  PubMed  Google Scholar 

  12. Shekhawat GS, Dravid VP (2005) Nanoscale imaging of buried structures via scanning near-field ultrasound holography. Science 310(5745):89–92

    Article  CAS  PubMed  Google Scholar 

  13. Kimura K et al (2013) Imaging of Au nanoparticles deeply buried in polymer matrix by various atomic force microscopy techniques. Ultramicroscopy 133:41–49

    Article  CAS  PubMed  Google Scholar 

  14. Ducker WA, Senden TJ, Pashley RM (1991) Direct measurement of colloidal forces using an atomic force microscope. Nature 353:239–241

    Article  CAS  Google Scholar 

  15. Okajima T (2012) Atomic force microscopy for the examination of single cell rheology. Curr Pharm Biotechnol 13:2623–2631

    CAS  PubMed  Google Scholar 

  16. Okajima T et al (2007) Stress relaxation measurement of fibroblast cells with atomic force microscopy. Jpn J Appl Phys 46:5552–5555

    Article  CAS  Google Scholar 

  17. Alcaraz J et al (2002) Correction of microrheological measurements of soft samples with atomic force microscopy for the hydrodynamic drag on the cantilever. Langmuir 18:716–721

    Article  CAS  Google Scholar 

  18. Johnson KL (1987) Contact mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  19. Landau LD, Lifshiz EM (1986) Theory of elasticity, vol 3, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  20. Hiratsuka S et al (2009) Power-law stress and creep relaxations of single cells measured by colloidal probe atomic force microscopy. Jpn J Appl Phys 48(8):08JB17

    Article  Google Scholar 

  21. Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868–1873

    Article  CAS  Google Scholar 

  22. A-Hassan E et al (1998) Relative microelastic mapping of living cells by atomic force microscopy. Biophys J 74:1564–1578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Haga H et al (2000) Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82:253–258

    Article  CAS  PubMed  Google Scholar 

  24. Okajima T et al (2007) Stress relaxation of HepG2 cells measured by atomic force microscopy. Nanotechnology 18:084010

    Article  Google Scholar 

  25. Radmacher M et al (1992) From molecules to cells – imaging soft samples with the atomic force microscope. Science 257(5078):1900–1905

    Article  CAS  PubMed  Google Scholar 

  26. Radmacher M, Tilmann RW, Gaub HE (1993) Imaging viscoelasticity by force modulation with the atomic force microscope. Biophys J 64(3):735–742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Radmacher M et al (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J 70:556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Alcaraz J et al (2003) Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys J 84:2071–2079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Mahaffy RE et al (2000) Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys Rev Lett 85(4):880–883

    Article  CAS  PubMed  Google Scholar 

  30. Mahaffy RE et al (2004) Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys J 86:1777–1793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Charras GT, Horton MA (2002) Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys J 82:2970–2981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Darling EM, Zauscher S, Guilak F (2006) Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthr Cartil 14(6):571–579

    Article  CAS  PubMed  Google Scholar 

  33. Darling EM et al (2007) A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential? Biophys J 92(5):1784–1791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Findley WN, Lai JS, Onaran K (1989) Creep and relaxation of nonlinear viscoelastic materials with an introduction to linear viscoelasticity. Dover Publications Inc., New York

    Google Scholar 

  35. Wu HW, Kuhn T, Moy VT (1998) Mechanical properties of L929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking. Scanning 20:389–397

    Article  CAS  PubMed  Google Scholar 

  36. Fabry B et al (2001) Scaling the microrheology of living cells. Phys Rev Lett 87(14):148102

    Article  CAS  PubMed  Google Scholar 

  37. Fabry B et al (2003) Time scale and other invariants of integrative mechanical behavior in living cells. Phys Rev E 68:041914

    Article  Google Scholar 

  38. Deng LH et al (2006) Fast and slow dynamics of the cytoskeleton. Nat Mater 5(8):636–640

    Article  CAS  PubMed  Google Scholar 

  39. Van Citters KM et al (2006) The role of F-actin and myosin in epithelial cell rheology. Biophys J 91(10):3946–3956

    Article  PubMed Central  PubMed  Google Scholar 

  40. Hoffman BD et al (2006) The consensus mechanics of cultured mammalian cells. Proc Natl Acad Sci U S A 103(27):10259–10264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Massiera G et al (2007) Mechanics of single cells: rheology, time dependence, and fluctuations. Biophys J 93(10):3703–3713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Balland M et al (2006) Power laws in microrheology experiments on living cells: comparative analysis and modeling. Phys Rev E 74(2):021911

    Article  Google Scholar 

  43. Guck J et al (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88(5):3689–3698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Gossett DR et al (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci U S A 109(20):7630–7635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Hiratsuka S et al (2009) The number distribution of complex shear modulus of single cells measured by atomic force microscopy. Ultramicroscopy 109:937–941

    Article  CAS  PubMed  Google Scholar 

  46. Mizutani Y et al (2008) Elasticity of living cells on a microarray during the early stages of adhesion measured by atomic force microscopy. Jpn J Appl Phys 47:6177–6180

    Article  CAS  Google Scholar 

  47. Cai P et al (2013) Quantifying cell-to-cell variation in power-law rheology. Biophys J 105(5):1093–1102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Miyaoka A et al (2011) Rheological properties of growth-arrested fibroblast cells under serum starvation measured by atomic force microscopy. Jpn J Appl Phys 50(8):08LB16

    Article  Google Scholar 

  49. Reed J et al (2008) High throughput cell nanomechanics with mechanical imaging interferometry. Nanotechnology 19(23):235101

    Article  PubMed Central  PubMed  Google Scholar 

  50. Kollmannsberger P, Fabry B (2011) Linear and nonlinear rheology of living cells. Annu Rev Mater Res 41:75–97

    Article  CAS  Google Scholar 

  51. Trepat X et al (2007) Universal physical responses to stretch in the living cell. Nature 447(7144):592–596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Chowdhury F et al (2008) Is cell rheology governed by nonequilibrium-to-equilibrium transition of noncovalent bonds? Biophys J 95(12):5719–5727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Kollmannsberger P, Fabry B (2009) Active soft glassy rheology of adherent cells. Soft Matter 5(9):1771–1774

    Article  CAS  Google Scholar 

  54. Trepat X, Lenormand G, Fredberg JJ (2008) Universality in cell mechanics. Soft Matter 4(9):1750–1759

    Article  CAS  Google Scholar 

  55. Overby DR et al (2005) Novel dynamic rheological behavior of individual focal adhesions measured within single cells using electromagnetic pulling cytometry. Acta Biomater 1(3):295–303

    Article  PubMed  Google Scholar 

  56. Stamenovic D et al (2007) Rheological behavior of living cells is timescale-dependent. Biophys J 93(8):L39–L41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Desprat N et al (2005) Creep function of a single living cell. Biophys J 88(3):2224–2233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Smith BA et al (2005) Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist. Biophys J 88(4):2994–3007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Roca-Cusachs P et al (2006) Rheology of passive and adhesion-activated neutrophils probed by atomic force microscopy. Biophys J 91(9):3508–3518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Moreno-Flores S et al (2010) Stress relaxation microscopy: imaging local stress in cells. J Biomech 43(2):349–354

    Article  PubMed  Google Scholar 

  61. Puig-de-Morales M et al (2004) Cytoskeletal mechanics in adherent human airway smooth muscle cells: probe specificity and scaling of protein-protein dynamics. Am J Physiol Cell Physiol 287(3):C643–C654

    Article  CAS  PubMed  Google Scholar 

  62. Laudadio RE et al (2005) Rat airway smooth muscle cell during actin modulation: rheology and glassy dynamics. Am J Physiol Cell Physiol 289(6):C1388–C1395

    Article  CAS  PubMed  Google Scholar 

  63. Maloney JM, Van Vliet KJ (2011) On the origin and extent of mechanical variation among cells. arXiv:1104.0702v2

    Google Scholar 

  64. Takahashi R et al (2014) Atomic force microscopy measurements of mechanical properties of single cells patterned by microcontact printing. Adv Robot 28:449–455

    Article  Google Scholar 

  65. Lekka M, Laidler P, Gil D, Lekki J, Stachura Z, Hrynkiewicz AZ (1999) Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur Biophys J 28:312–316

    Article  CAS  PubMed  Google Scholar 

  66. Cross SE et al (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2(12):780–783

    Article  CAS  PubMed  Google Scholar 

  67. Plodinec M et al (2012) The nanomechanical signature of breast cancer. Nat Nanotechnol 7(11):757–765

    Article  CAS  PubMed  Google Scholar 

  68. Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10:75–82

    Article  CAS  PubMed  Google Scholar 

  69. Cai YF, Sheetz MP (2009) Force propagation across cells: mechanical coherence of dynamic cytoskeletons. Curr Opin Cell Biol 21(1):47–50

    Article  CAS  PubMed  Google Scholar 

  70. Hu SH et al (2003) Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells. Am J Physiol Cell Physiol 285(5):C1082–C1090

    Article  CAS  PubMed  Google Scholar 

  71. Hu SH et al (2004) Mechanical anisotropy of adherent cells probed by a three-dimensional magnetic twisting device. Am J Physiol Cell Physiol 287(5):C1184–C1191

    Article  CAS  PubMed  Google Scholar 

  72. Hu SH et al (2005) Prestress mediates force propagation into the nucleus. Biochem Biophys Res Commun 329(2):423–428

    Article  CAS  PubMed  Google Scholar 

  73. Wang N, Hu SH, Butler JP (2007) Imaging stress propagation in the cytoplasm of a living cell. Methods Cell Biol. 83:179–198

    Google Scholar 

  74. Paul R et al (2008) Propagation of mechanical stress through the actin cytoskeleton toward focal adhesions: Model and experiment. Biophys J 94(4):1470–1482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Rosenbluth MJ et al (2008) Slow stress propagation in adherent cells. Biophys J 95(12):6052–6059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Silberberg YR et al (2008) Mitochondrial displacements in response to nanomechanical forces. J Mol Recognit 21(1):30–36

    Article  CAS  PubMed  Google Scholar 

  77. Tan JL et al (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci U S A 100(4):1484–1489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Gray DS, Tien J, Chen CS (2003) Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s modulus. J Biomed Mater Res A 66A(3):605–614

    Article  CAS  Google Scholar 

  79. Okada A et al (2011) Direct observation of dynamic force propagation between focal adhesions of cells on microposts by atomic force microscopy. Appl Phys Lett 99(26):263703

    Article  Google Scholar 

  80. Chaudhuri O et al (2009) Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells. Nat Methods 6(5):383–388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Xu J, Tseng Y, Wirtz D (2000) Strain hardening of actin filament networks. Regulation by the dynamic cross-linking protein alpha-actinin. J Biol Chem 275(46):35886–35892

    Article  CAS  PubMed  Google Scholar 

  82. Hansma PK et al (1989) The scanning ion-conductance microscope. Science 243(4891):641–643

    Article  CAS  PubMed  Google Scholar 

  83. Korchev YE et al (1997) Scanning ion conductance microscopy of living cells. Biophys J 73(2):653–658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Gorelik J et al (2003) Dynamic assembly of surface structures in living cells. Proc Natl Acad Sci U S A 100(10):5819–5822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Novak P et al (2009) Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat Methods 6(4):279–281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Rheinlaender J et al (2011) Comparison of scanning Ion conductance microscopy with atomic force microscopy for cell imaging. Langmuir 27(2):697–704

    Article  CAS  PubMed  Google Scholar 

  87. Reed J et al (2008) Live cell interferometry reveals cellular dynamism during force propagation. ACS Nano 2(5):841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Reed J et al (2011) Rapid, massively parallel single-cell drug response measurements via live cell interferometry. Biophys J 101(5):1025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Yamauchi T, Iwai H, Yamashita Y (2011) Label-free imaging of intracellular motility by low-coherent quantitative phase microscopy. Opt Express 19:5536–5550

    Article  CAS  PubMed  Google Scholar 

  90. Pelling AE et al (2004) Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 305(5687):1147–1150

    Article  CAS  PubMed  Google Scholar 

  91. Pelling AE et al (2007) Mapping correlated membrane pulsations and fluctuations in human cells. J Mol Recognit 20(6):467–475

    Article  CAS  PubMed  Google Scholar 

  92. Mizutani Y et al (2013) Nanoscale fluctuations on epithelial cell surfaces investigated by scanning ion conductance microscopy. Appl Phys Lett 102(17):173703

    Article  Google Scholar 

  93. Nitz H, Kamp J, Fuchs H (1998) A combined scanning ion-conductance and shear-force microscope. Probe Micrsoc 1:187–200

    CAS  Google Scholar 

  94. Rappaz B et al (2009) Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy. Blood Cell Mol Dis 42(3):228–232

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaharu Okajima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Okajima, T. (2015). Atomic Force Microscopy: Imaging and Rheology of Living Cells. In: Kita, R., Dobashi, T. (eds) Nano/Micro Science and Technology in Biorheology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54886-7_15

Download citation

Publish with us

Policies and ethics