Introduction of Nano/Micro Science and Technology in Biorheology

  • Rio Kita
  • Toshiaki Dobashi


Rheology is the science of the deformation and flow responses of viscoelastic materials resulting from stimulation, mainly by inducing mechanical stress. The stimulus-response relationship or response function is a characteristic of materials, and thus rheology provides general theoretical and experimental approaches that can be applied to the study of an object. This enables us to understand the macroscopic elasticity, viscosity, and viscoelasticity of materials on a molecular basis.


Atomic Force Microscopy Magnetic Resonance Elastography Elongational Flow Dilute Polymer Solution Biomolecular Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, IthacaGoogle Scholar
  2. 2.
    Domb C, Green M, Lebowitz JL (1991) Phase transitions and critical phenomena. Academic, London/New YorkGoogle Scholar
  3. 3.
    Schlag EW (2012) Time of flight mass spectroscopy and its application. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    James TL (ed) (2005) Nuclear magnetic resonance of biological macromolecules, Part C, vol 394, Methods in enzymology. Elsevier Academic Press, New YorkGoogle Scholar
  5. 5.
    Michel M, Modo J, Bulte JWM (eds) (2007) Molecular and cellular MR imaging. CRC Press, Boca RatonGoogle Scholar
  6. 6.
    Hannaford P (2005) Femtosecond laser spectroscopy. Springer, New YorkCrossRefGoogle Scholar
  7. 7.
    Flora L, Nathan A (2010) CCD image sensors in deep-ultraviolet: degradation behavior and damage mechanisms (microtechnology and MEMS). Springer, Berlin/New YorkGoogle Scholar
  8. 8.
    Bhushan B, Fuchs H, Tomitori M (2008) Scanning probe microscopy techniques. Springer, Berlin/New YorkGoogle Scholar
  9. 9.
    MacKintosh FC, et al. (1999) Microrheology. Curr Opin Colloid Interface Sci 4:300; Capsi A, et al. (2000) Enhanced diffusion in active intracellular transport. Phys Rev Lett 85:5655Google Scholar
  10. 10.
    Wilson LG, Poon WCK (2011) Small-world rheology: an introduction to probe-based active microrheology. PCCP 22:10617; Lee H, Ferrer JM, Nakamura F, Lang MJ, Kamm RD (2010) Passive and active microrheology for cross-linked F-actin networks in vitro. Acta Biomater 6(4):1207–1218Google Scholar
  11. 11.
    Haga H, et al. (2000) Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy 82:253; Bhanu P, Heinrich J, Hoerber JK (eds) Atomic force microscopy. Academic Press, San DiegoGoogle Scholar
  12. 12.
    Matthew MJ, Fordyce PM, Engh AM, Neuman KC, Block SM (2004) Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat Methods 1:133–139CrossRefGoogle Scholar
  13. 13.
    Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5:491–505PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297PubMedCrossRefGoogle Scholar
  15. 15.
    Masuda A, Ushida K, Okamoto T (2005) Direct observation of spatiotemporal dependence of anomalous diffusion in inhomogeneous fluid by sample-volume-controlled fluorescence correlation spectroscopy. Phys Rev E 72:060101RCrossRefGoogle Scholar
  16. 16.
    Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL (1990) Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269:1854CrossRefGoogle Scholar
  17. 17.
    Oka S (1981) Cardiovascular hemorheology. Cambridge University Press, CambridgeGoogle Scholar
  18. 18.
    Kremer F, Schonhals A (2003) Broadband dielectric spectroscopy. Springer, Berlin/New YorkCrossRefGoogle Scholar
  19. 19.
    Callaghan PT (2006) Rheo-NMR and velocity imaging. Curr Opin Colloid Interface Sci 11:13CrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Department of PhysicsTokai UniversityHiratsukaJapan
  2. 2.Division of Molecular Science, Faculty of Science and TechnologyGunma UniversityKiryuJapan

Personalised recommendations